Math, asked by elinorandrea7, 12 hours ago

Evaluate the following sum without simplify the cubes : 1^{3}- 2^{3}+3^{3}-4^{3}+...+9^{3}

Use sequence and series to solve this.

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given series is

\rm \:  {1}^{3} -  {2}^{3} +  {3}^{3} -  {4}^{3} + ... +  {9}^{3}  \\

can be rewritten as

\rm \: =  \:   {1}^{3} + {3}^{3} +  {5}^{3} + {7}^{3}+  {9}^{3} - ( {2}^{3} +  {4}^{3} +  {6}^{3} +  {8}^{3}) \\

can be further rewritten as

\rm \: =  \: ({1}^{3} + {2}^{3} +  {3}^{3} +... + {9}^{3}) - 2( {2}^{3} +  {4}^{3} +  {6}^{3} +  {8}^{3}) \\

can be further rewritten as

\rm \: =  \: ({1}^{3} + {2}^{3} +  {3}^{3} +... + {9}^{3}) - 2( {(1.2)}^{3} +  {(2.2)}^{3} +  {(2.3)}^{3} +  {2.4)}^{3}) \\

\rm \: =  \: ({1}^{3} + {2}^{3} +  {3}^{3} +... + {9}^{3}) - 2. {2}^{3} ( {1}^{3} +  {2}^{3} +  {3}^{3} +  {4}^{3}) \\

\rm \:  =  \: \displaystyle\sum_{k=1}^9\rm  {k}^{3} - 16\displaystyle\sum_{k=1}^4\rm  {k}^{3} \\

We know,

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm  {k}^{3} \:  =  \:  {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2} \: }} \\

So, using this result, we get

\rm \:  =  \: \bigg(\dfrac{9(9 + 1)}{2}\bigg)^{2}   - 16 \bigg(\dfrac{4(4 + 1)}{2}\bigg)^{2}  \\

\rm \:  =  \:  {45}^{2} - 16 \times  {(10)}^{2}  \\

\rm \:  =  \: 2025 - 1600 \\

\rm \:  =  \: 425 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\bf \:  {1}^{3} -  {2}^{3} +  {3}^{3} -  {4}^{3} + ... +  {9}^{3} = 425 \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm k \:  =  \:  \frac{n(n + 1)}{2} \: }} \\

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm  {k}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6} \: }} \\

Similar questions