Math, asked by choudhryhello, 19 days ago

Evaluate the following:
1)\displaystyle \rm \lim_{x \to 0} \frac{1-cos x}{x^2}
2)\displaystyle \rm \lim_{x \to 0} \frac{ln(tanx+1)}{sinx}

Answers

Answered by YourHelperAdi
4

To Evaluate :

\displaystyle \rm 1) \lim_{x \to 0} \frac{1-cosx}{x^2} \\2) \lim_{x \to 0}\frac{ln(tanx+1)}{sinx}

Solution :

1) \displaystyle \rm  \lim_{x \to 0} \frac{1-cosx}{x^2}

so, here if we put the value of x directly as zero, we will get the result as 0/0 which is an indeterminant form.

using the formula :

\bull \rm \displaystyle \lim_{x\to 0} \frac{sinx}{x} = 1

\bull \rm \displaystyle  \lim_{x \to 0} cosx =1

So, we will first simplify this limit :

\displaystyle \rm \implies \lim_{x \to 0} \frac{(1-cosx)(1+cosx)}{x^2(1+cosx)}

\displaystyle \rm \implies \lim_{x \to 0} \frac{1-cos^2x}{x^2(1+cosx)}

\implies\displaystyle \rm  \lim_{x \to 0} \frac{sin^2x}{x^2(1+cosx)}

\implies \displaystyle \rm  \lim_{x \to 0} \frac{sin^2}{x^2}\times \frac{1}{1+cosx}

\implies \displaystyle \rm  \lim_{x \to 0} (\frac{sinx}{x} {)}^2\times\frac{1}{1+cosx}

now, as x approaches 0, we get the result as:

\implies \displaystyle \rm 1\times\frac{1}{1+1}

\displaystyle \rm \red{\underline{\boxed{ \implies \displaystyle \rm  \lim_{x \to 0} \frac{1-cosx}{x^2} = \frac{1}{2}}}}

Identities used here :

\displaystyle \rm \bull (a+b)(a-b) = a^2-b^2

\displaystyle \rm \bull 1-cos^2\theta = sin^2 \theta

\displaystyle \rm \bull (\frac{x^2}{y^2} ) =(\frac{x}{y}  )^{2}

_____________________________________

2) \displaystyle \rm \lim_{x \to 0}\frac{ln(tanx+1)}{sinx}

using the formula :

\bull \rm \displaystyle \rm \lim_{x \to 0} \frac{ln(x+1)}{x}  = 1

\bull \rm \displaystyle  \lim_{x \to 0} cosx =1

now, simplifying this limit :

\implies \rm \displaystyle \rm \lim_{x \to 0}\frac{ln(tanx+1)}{sinx\times \frac{tanx}{tanx} }

\implies \displaystyle \rm \lim_{x \to 0}\frac{ln(tanx+1)}{tanx}\times \frac{1}{cosx}

\implies \rm \displaystyle 1\times 1

\blue{\underline{\boxed{\implies \rm \displaystyle \rm \lim_{x \to 0}\frac{ln(tanx+1)}{sinx} = 1}}}

Identities used here :

\bull \displaystyle \rm \frac{sin\theta}{tan\theta} = cos\theta

Answered by amitnrw
4

Given :  \displaystyle \rm \lim_{x \to 0} \frac{1-\cos x}{x^2}

\displaystyle \rm \lim_{x \to 0} \frac{\ln (\tan x + 1)}{\sin x}

To Find : evaluate the Limit

Solution:

\displaystyle \rm \lim_{x \to 0} \frac{1-\cos x}{x^2}

cos ( 0) = 1  => 1 - cos(0) = 0

 and 0² = 0

0/0  form

Hence Apply L'Hosptital Rule

Differentiate numerator and Denominator

\displaystyle \rm \lim_{x \to 0} \frac{ \sin x}{2x}

Still 0/0  form

Differentiate numerator and Denominator  again

\displaystyle \rm \lim_{x \to 0} \frac{ \cos x}{2}

= 1/2

 \displaystyle \rm \lim_{x \to 0} \frac{1-\cos x}{x^2}  = 1/2

\displaystyle \rm \lim_{x \to 0} \frac{\ln (\tan x + 1)}{\sin x}

tan 0 = 0  , sin 0 = 0  ln 1  = 0

0/0  form

On Differentiating numerator and Denominator

\displaystyle \rm \lim_{x \to 0} \frac{ \sec^2 x }{(\tan x + 1)\cos x}

sec 0 = 1

cos 0 = 1

= 1²/(0+ 1)1

= 1/1

= 1

\displaystyle \rm \lim_{x \to 0} \frac{\ln (\tan x + 1)}{\sin x} = 1

Learn More:

2.3(x−1.2)=−9.66 Enter your answer, as a decimal, in the . x

brainly.in/question/11264248

If, x = [root(p+q) +root(pq)]

brainly.in/question/381466

Similar questions