Evaluate the following:-
![1 + i + {i}^{2} + {i}^{3} + ................ + {i}^{12} 1 + i + {i}^{2} + {i}^{3} + ................ + {i}^{12}](https://tex.z-dn.net/?f=1+%2B+i+%2B++%7Bi%7D%5E%7B2%7D++%2B++%7Bi%7D%5E%7B3%7D++%2B+................+%2B+++%7Bi%7D%5E%7B12%7D+)
Answers
Answered by
6
i^4n = 1
i^4n+1 = i
i^4n+2 = -1
i^4n+3 = -i
where n is a whole no.
so 1+i+i^2+i^3= 1+i-1-i= 0
this is gonna repeat till i^11
so ans is i^12 = 1
solution no 2--------> by sum of GP
a(r^n -1) /(r-1) where n= 13 a= 1
r= i
so sum = 1(i^13 -1) / (i-1)
i^13 = i
thus = i-1/i-1= 1
i^4n+1 = i
i^4n+2 = -1
i^4n+3 = -i
where n is a whole no.
so 1+i+i^2+i^3= 1+i-1-i= 0
this is gonna repeat till i^11
so ans is i^12 = 1
solution no 2--------> by sum of GP
a(r^n -1) /(r-1) where n= 13 a= 1
r= i
so sum = 1(i^13 -1) / (i-1)
i^13 = i
thus = i-1/i-1= 1
Anonymous:
just read it once
Similar questions