Math, asked by Anonymous, 6 hours ago

Evaluate the following:-

\dfrac{1}{log_{a}bc + 1} + \dfrac{1}{log_{b}ac+1} + \dfrac{1}{log_{c}ab+1}

Don't be greedy for points

Answers

Answered by AestheticSky
66

Given Expression:-

\\\bullet\quad\boxed{\sf \dfrac{1}{log_{a}bc+1} + \dfrac{1}{log_{b}ac+1}+\dfrac{1}{log_{c}ab+1}  }\dag\\

Solution:-

\\\rightarrow\quad\sf \dfrac{1}{log_{a}bc+log_{a}a} + \dfrac{1}{log_{b}ac+log_{b}b}+\dfrac{1}{log_{c}ab+log_{c}c}  \\

\\\rightarrow\quad\sf \dfrac{1}{log_{a}abc} + \dfrac{1}{log_{b}abc}+\dfrac{1}{log_{c}abc}  \\

\\\rightarrow\quad\sf log_{abc}a+ log_{abc}b+log_{abc}c  \\

\\\rightarrow\quad\sf log_{abc}abc  \\

\\\rightarrow\quad\boxed{\sf 1} \bigstar \\

___________________

Answered by Anonymous
31

Given :-

\tt \dfrac{1}{log_{a}bc + 1} + \dfrac{1}{log_{b}ac+1} + \dfrac{1}{log_{c}ab+1}

To Find :-

Value of the given Expression

Solution :-

At first see , the Denominator of all the Fractions clearly . You will find that their is a same thing in all i.e 1 . And Their are three Bases ( to the log ) a , b & c . In each fraction each of them is appeared ( in the base of log ) also their is a log in addition with 1 in all fractions . So , we are going to Change the 1 of every denominator in accordance with the base of the log !

We knows a Identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \bf { log_{x}x = 1 }}}}}{\bigstar}}

So , As I told Previous we will change the 1 in accordance with the base of the log . So , In 1st fraction we change 1 to log to base " a " in 2nd log to base " b " in 3rd log to base " c " .

Now we have ;

 \quad { : \longmapsto { \tt { \dfrac{1}{log_{a}bc + log_{a}a} + \dfrac{1}{log_{b}ac+log_{b}b} + \dfrac{1}{log_{c}ab+log_{c}c}}}}

We also knows a logarithmic identity that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \bf {  log_{a}m + log_{a}n = log_{a} ( m . n ) }}}}}{\bigstar}}

Using this the given Expression transforms to ;

 \quad { : \longmapsto { \tt { \dfrac{1}{log_{a}(bc.a)}+ \dfrac{1}{log_{a}(ac.b)} + \dfrac{1}{log_{c}(ab.c)} }}}

 \quad { : \longmapsto { \tt { \dfrac{1}{log_{a}(abc)}+ \dfrac{1}{log_{a}(abc)} + \dfrac{1}{log_{c}(abc)} }}}

Now , we knows another Logarithmic identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \bf { \dfrac{1}{log_{a}b} = log_{b}a }}}}}{\bigstar}}

Using this we have ;

 \quad { : \longmapsto { \tt { log_{abc}a + log_{abc}b + log_{abc}c }}}

Now , Using the additive Identity used above we have ;

 \quad { : \longmapsto { \tt { log_{abc}(a.b.c)}}}

 \quad { : \longmapsto { \tt { log_{abc}(abc)}}}

Using the above same base identity we have ;

 \quad { : \longmapsto { \tt { 1 }}}

 { \bigstar { \underline { \boxed { \red { \bf { \therefore { \dfrac{1}{log_{a}bc + 1} + \dfrac{1}{log_{b}ac+1} + \dfrac{1}{log_{c}ab+1} = 1 }}}}}{ \bigstar }}}

Similar questions