Math, asked by YourHelperAdi, 1 day ago

Evaluate the following:
\displaystyle \rm 1)  \int(2x + 3 {)}^{2} dx
\displaystyle \rm  2)\int_{0}^{2} (2x + 3 {)}^{2} dx
Please solve this :)
Thanks!​

Answers

Answered by anindyaadhikari13
11

Solution 1:

The given integral is:

 =\displaystyle \rm\int {(2x + 3)}^{2}  \: dx

Can be written as:

 =\displaystyle \rm\int(4 {x}^{2}  + 12x + 9)\: dx

 =\displaystyle \rm\int4 {x}^{2}  \: dx +  \int 12x  \: dx+  \int9\: dx

 =\displaystyle \rm4\int{x}^{2}  \: dx +  12\int x  \: dx+  9\int dx

 =\displaystyle \rm4 \dfrac{ {x}^{3} }{3} +  12 \dfrac{ {x}^{2} }{2}  +  9x

 =\displaystyle \rm\dfrac{ 4{x}^{3} }{3} +\dfrac{12 {x}^{2} }{2}  +  9x

 =\displaystyle \rm\dfrac{ 4{x}^{3} }{3} +6{x}^{2}  +  9x + C

Therefore:

 \displaystyle \rm \longrightarrow\int {(2x + 3)}^{2}  \: dx =  \dfrac{4 {x}^{3} }{3} + 6 {x}^{2}  + 9x + C

Solution 2:

The given definite integral is:

\displaystyle \rm = \int_{0}^{2} (2x + 3 {)}^{2} dx

 =\displaystyle  \rm \bigg(\dfrac{ 4{x}^{3} }{3} +6{x}^{2}  +  9x \bigg)  \bigg| ^{2}_{0}

 =\displaystyle  \rm \dfrac{ 4 \times {2}^{3} }{3} +6 \times {2}^{2}  +  9 \times 2 -0

 =\displaystyle  \rm \dfrac{32}{3}  + 24 + 18

 =\displaystyle  \rm10 \dfrac{2}{3}  + 42

 =\displaystyle  \rm52 \dfrac{2}{3}

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions