Math, asked by 12ahujagitansh, 8 hours ago

Evaluate the following

\displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n !}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Before we start the question, let recall

\boxed{\tt{ \:  \:  \:  \displaystyle \sum_{n=0}^{\infty} \frac{1}{n !} = e \:  \:  \: }}

Now,

Given expression is

\rm :\longmapsto\:\displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n !}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} }{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} - 1 + 1 }{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} - 1 }{(n - 1)!} + \displaystyle \sum_{n=0}^{\infty} \frac{1}{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{(n - 1)(n + 1)}{(n - 1)!} + \displaystyle \sum_{n=1}^{\infty} \frac{1}{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{(n - 1)(n + 1)}{(n - 1)(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n + 1}{(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2+ 3}{(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2}{(n - 2)!} + \displaystyle \sum_{n=0}^{\infty} \frac{3}{(n - 2) !} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2}{(n - 2)(n - 3)!} + \displaystyle \sum_{n=2}^{\infty} \frac{3}{(n - 2) !} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{1}{(n - 3)!}  + 3e + e

\rm \:  =  \: \displaystyle \sum_{n=3}^{\infty} \frac{1}{(n - 3)!}  + 3e + e

\rm \:  =  \: e+ 4e

\rm \:  =  \: 5e

Hence

 \purple{\rm\implies \: \: \boxed{\tt{  \:  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n !} \ =  \: 5e \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\rm :\longmapsto\:\boxed{\tt{  {e}^{x}  \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {x}^{n} }{n !}}}

\rm :\longmapsto\:\boxed{\tt{  {e}^{ - x}  \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {( - 1)}^{n}  {x}^{n} }{n !}}}

\rm :\longmapsto\:\boxed{\tt{ e = \displaystyle \sum_{n=0}^{\infty} \frac{1}{n !} = 1 +  \frac{1}{1!} +  \frac{1}{2!} +  \frac{1}{3!} +  -  -  -  \infty }}

\rm :\longmapsto\:\boxed{\tt{  {e}^{ - 1}  = \displaystyle \sum_{n=0}^{\infty} \frac{ {( - 1)}^{n} }{n !} = \frac{1}{2!} -  \frac{1}{3!} + \frac{1}{4!}   -  -  -  \infty }}

Answered by OoAryanKingoO78
0

Answer:

\large\underline{\sf{Solution-}}

Before we start the question, let recall

\boxed{\tt{ \:  \:  \:  \displaystyle \sum_{n=0}^{\infty} \frac{1}{n !} = e \:  \:  \: }}

Now,

Given expression is

\rm :\longmapsto\:\displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n !}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} }{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} - 1 + 1 }{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{2} - 1 }{(n - 1)!} + \displaystyle \sum_{n=0}^{\infty} \frac{1}{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{(n - 1)(n + 1)}{(n - 1)!} + \displaystyle \sum_{n=1}^{\infty} \frac{1}{(n - 1)!}

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{(n - 1)(n + 1)}{(n - 1)(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n + 1}{(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2+ 3}{(n - 2)!} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2}{(n - 2)!} + \displaystyle \sum_{n=0}^{\infty} \frac{3}{(n - 2) !} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{n - 2}{(n - 2)(n - 3)!} + \displaystyle \sum_{n=2}^{\infty} \frac{3}{(n - 2) !} + e

\rm \:  =  \: \displaystyle \sum_{n=0}^{\infty} \frac{1}{(n - 3)!}  + 3e + e

\rm \:  =  \: \displaystyle \sum_{n=3}^{\infty} \frac{1}{(n - 3)!}  + 3e + e

\rm \:  =  \: e+ 4e

\rm \:  =  \: 5e

Hence

 \purple{\rm\implies \: \: \boxed{\tt{  \:  \: \displaystyle \sum_{n=0}^{\infty} \frac{ {n}^{3} }{n !} \ =  \: 5e \:  \: }}}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions