Math, asked by Nilesh859, 5 months ago

Evaluate the following...
  \frac{sin30° + tan45° - cosec60°}{sec30° + cos60° + cot45°}
please ensure to choose writing format in form of equation as I had written above so that I can choose u answer as brainliest..​​

Answers

Answered by sritarutvik
1

Step-by-step explanation:

{sin30 + tan45° - cosec60°}/{sec30° + cos60° + cot45°}

=(1/2 + 1 - 2/root3 ) / (2/root3 + 1/2 + 1)

=(3/2 -2/root3 ) / (3/2+ 2/root3 )

=(3root3-4 )/(3root3+4)

=((3root3-4)/(3root3+4))((3root3-4)/(3root3-4))

=(3root3-4)^2/((3root3)^2-4^2)

=((3root3)^2-2*3root3*4+4^2) /(27-16)

=(27-24root3+16) /11

=(43-24root3)/11

Answered by vedantSawantIIT
1

Answer:

</p><p> \frac{sin30° + tan45° - cosec60°}{sec30° + cos60° + cot45°}  \\   = \frac{ \frac{1}{2} + 1 -  \frac{2}{ \sqrt{3} }  }{ \frac{2}{ \sqrt{3}  } +  \frac{1}{2}  + 1 }  \\  =  \frac{ \sqrt{3 } + 2 \sqrt{3} - 4  }{4 +  \sqrt{3} + 2 \sqrt{3}  }  \\  =  \frac{3 \sqrt{3 } - 4 }{3 \sqrt{3} + 4 }  \times  \frac{3 \sqrt{3} - 4 }{3 \sqrt{3} - 4 }  \\  =  \frac{27 - 12 \sqrt{3}  - 12 \sqrt{3} + 16  }{27 - 16}  \\  =  \frac{43 - 24 \sqrt{3} }{11}

Similar questions
Math, 10 months ago