Math, asked by papafairy143, 17 days ago

Evaluate the following

 \int \:  \frac{dx}{ \sqrt{x} +  \sqrt[3]{x}  }

Answers

Answered by mathdude500
51

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  \frac{dx}{ \sqrt{x}  +  \sqrt[3]{x} }

To evaluate this integral, we have to first remove the fractional exponents.

So, LCM of denominator of fractions in exponents is 6

So, we substitute

\rm \: x =  {y}^{6}  \:  \:  \:  \: \bigg[\rm\implies \:y =  {\bigg(x\bigg) }^{\dfrac{1}{6} }\bigg ] \\

\rm\implies \:dx =  {6y}^{5} \: dy

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{ {6y}^{5} }{ \sqrt{ {y}^{6}}  +  \sqrt[3]{ {y}^{6} } } \: dy

\rm \:  =  \: 6\displaystyle\int\rm  \frac{ {y}^{5} }{ {y}^{3}  +  {y}^{2} } \: dy

\rm \:  =  \: 6\displaystyle\int\rm  \frac{ {y}^{5} }{ {y}^{2}(y + 1) } \: dy

\rm \:  =  \: 6\displaystyle\int\rm  \frac{ {y}^{3} }{y + 1} \: dy

\rm \:  =  \: 6\displaystyle\int\rm  \frac{ {y}^{3}  + 1 - 1}{y + 1} \: dy

\rm \:  =  \: 6\displaystyle\int\rm \bigg[ \frac{ {y}^{3}  + 1}{y + 1} -  \frac{1}{y + 1} \bigg]\: dy

\rm \:  =  \: 6\displaystyle\int\rm \bigg[ \frac{(y + 1)( {y}^{2} - y + 1) }{y + 1} -  \frac{1}{y + 1} \bigg]\: dy

\rm \:  =  \: 6\displaystyle\int\rm \bigg[  {y}^{2} - y + 1 -  \frac{1}{y + 1} \bigg]\: dy

\rm \:  =  \: 6\bigg[\dfrac{ {y}^{3} }{3} -  \dfrac{ {y}^{2} }{2} + y - log |y + 1|   \bigg] + c

On substituting the value of y, we get

\rm \:  =  \: 6\bigg[\dfrac{ \sqrt{x} }{3} -  \dfrac{ \sqrt[3]{x}  }{2} +{{ \bigg(x\bigg) }^{\dfrac{1}{6}}} - log \bigg|{{ \bigg(x\bigg) }^{\dfrac{1}{6}}} + 1\bigg|   \bigg] + c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Result Used

\boxed{\tt{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2}) \: }} \\

\boxed{\tt{ \displaystyle\int\rm  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

\boxed{\tt{  \: \displaystyle\int\rm  \frac{1}{x} \: dx \:  =  \: log |x|  + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Anonymous
73

\sf\red{Solution:-}

\sf\longmapsto\boxed{\rm{Answer \: in\: the\: above\: attachment}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Attachments:
Similar questions