Math, asked by swanhayden7, 3 days ago

Evaluate the following

 \int \:  \frac{dx}{ x\sqrt{ {x}^{n}  - 1} }

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given integral is

 \displaystyle \int \:  \frac{1}{x \sqrt{ {x}^{n} - 1 } }  \: dx

To evaluate this integral, we use Method of Substitution

So, Substitute

\rm \:  \sqrt{ {x}^{n}  - 1}  = y

On squaring both sides, we get

\rm \:  {x}^{n}  - 1 =  {y}^{2}

\rm \:  {x}^{n} =  {y}^{2}  + 1

So, on differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}{x}^{n} = \dfrac{d}{dx} {y}^{2} +  \dfrac{d}{dx} 1

\rm \:  {nx}^{n - 1} = 2y\dfrac{dy}{dx} + 0

\rm \:   {nx}^{n - 1}  = 2y\dfrac{dy}{dx}

\rm \:   dx = \dfrac{2y}{{nx}^{n - 1} } \: dy

can be further rewritten as

\rm \:   dx = \dfrac{2xy}{{nx}^{n} } \: dy

\rm \:    \dfrac{dx}{x}  = \dfrac{2y}{n( {y}^{2}  + 1)} \: dy

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle \int \rm \frac{2y \: dy}{n \: ( {y}^{2} + 1) \: y }

\rm \:  =  \:  \dfrac{2}{n} \displaystyle \int \rm \frac{\: dy}{\: {y}^{2} + 1\:}

\rm \:  =  \:  \dfrac{2}{n}  {tan}^{ - 1}y + c

\rm \:  =  \:  \dfrac{2}{n}  {tan}^{ - 1} \sqrt{ {x}^{n} - 1 }  + c

Hence,

\rm\implies \boxed{\tt{ \:\displaystyle \int \rm \:  \frac{dx}{x \sqrt{ {x}^{n}  - 1} }   =  \:  \dfrac{2}{n}  {tan}^{ - 1} \sqrt{ {x}^{n} - 1 }  + c}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by TheBestWriter
3

Additional Information

f(x). int f(x)dx

1. k kx+c

2. sinx -cos x+c

3. cosx sin x+c

4. sec²x ten x+c

5. cosec²x -cot x+c

6. secxtanx sec x+c

Attachments:
Similar questions