Math, asked by AnanyaBaalveer, 3 days ago

Evaluate the following
\large\underline{\sf{evaluate \: the \: following}}
lim_{n}  =  \infty ( \frac{1}{1 +  \sqrt{1} }  +  \frac{1}{2 +  \sqrt{2n} }  +  \frac{1}{3 +  \sqrt{3n} }  +  -  -  -  +  \frac{1}{n +  \sqrt{ {n}^{2} } }

Answers

Answered by talpadadilip417
1

Step-by-step explanation:

 \\  \tiny \tt \lim \limits_{n \to\infty}   \left( \frac{1}{1 + \sqrt{n} } + \frac{1}{2 + \sqrt{2n} } + \frac{1}{3 + \sqrt{3n} } + - - - + \frac{1}{n + \sqrt{ {n}^{2} } } \right)

\\ \rule{300pt}{0.1pt}

Required limit

 \\  \[ \begin{array}{l} \displaystyle \tt =\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{r+\sqrt{r n}} \\ \\  \displaystyle \tt=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{\frac{1}{n}}{\frac{r}{n}+\sqrt{\frac{r}{n}}} \\  \\ \displaystyle \tt=\int_{0}^{1} \frac{d x}{x+\sqrt{x}}=2 \int_{0}^{i} \frac{d x}{2 \sqrt{x}(\sqrt{x}+1)} \\  \\ \displaystyle \tt=2[\log (\sqrt{x}+1)]_{0}^{1} \\ \\  \displaystyle \tt=2 \log 2=\log _{e} 4 \end{array} \]

Similar questions