Math, asked by papafairy143, 17 days ago

Evaluate the following

 lim_{n \to \:  \infty }( \frac{1}{1 +  \sqrt{1} }  +  \frac{1}{2 +  \sqrt{2n} }  +  \frac{1}{3 +  \sqrt{3n} }  +  -  -  -  +   \frac{1}{n +  \sqrt{ {n}^{2} } }  )

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{n \to  \infty }\rm \bigg( \frac{1}{1 + \sqrt{1} } + \frac{1}{2 + \sqrt{2n} } + \frac{1}{3 + \sqrt{3n} } + - - - + \frac{1}{n + \sqrt{ {n}^{2} } }\bigg)

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^{n}\rm  \frac{1}{r +  \sqrt{rn}}  \\

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^{n}\rm  \frac{1}{n\bigg(\dfrac{r}{n}  +  \dfrac{ \sqrt{rn} }{n} \bigg)}  \\

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^{n}\rm  \frac{1}{n\bigg(\dfrac{r}{n}  +   \sqrt{ \dfrac{r}{n} } \bigg)}  \\

Now, using limit as a sum of definite integrals, we have

\rm \:\dfrac{r}{n} \: changes \: to \: x \\

\rm \:\dfrac{1}{n} \: changes \: to \: dx \\

\rm\:\displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int \\

\rm \: \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm \: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n}{n} = \: 1 \\

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\int_0^1\rm  \frac{1}{x +  \sqrt{x} } \: dx \\

\rm \:  =  \: \displaystyle\int_0^1\rm  \frac{1}{ \sqrt{x} \times  \sqrt{x}   +  \sqrt{x} } \: dx \\

\rm \:  =  \: \displaystyle\int_0^1\rm  \frac{1}{\sqrt{x}( \sqrt{x} + 1) } \: dx \\

\rm \:  =  \: \displaystyle\int_0^1\rm  \frac{2}{2\sqrt{x} \: ( \sqrt{x} + 1) } \: dx \\

\rm \:  =  \: 2\displaystyle\int_0^1\rm  \frac{1}{2\sqrt{x} \: ( \sqrt{x} + 1) } \: dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c \: }} \\

So, using this identity, we get

\rm \:  =  \: 2 \: \bigg(log | \sqrt{x} + 1 |  \bigg)_0^1 \\

\rm \:  =  \: 2 \: \bigg(log | \sqrt{1} + 1 |  - log |1|  \bigg) \\

\rm \:  =  \: 2 \: log2 \\

Hence,

\color{green}\boxed{ \rm{\rm lim_{n \to \infty }\bigg( \frac{1}{1 + \sqrt{1} } + \frac{1}{2 + \sqrt{2n} } + \frac{1}{3 + \sqrt{3n} } + - - - + \frac{1}{n + \sqrt{ {n}^{2}}}\bigg ) = 2log2}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}


amansharma264: Excellent
Similar questions