Math, asked by guptaananya2005, 16 days ago

Evaluate the following

lim \: x \to \: 0 \:  \frac{1 - cos2x}{cos2x - cos4x}

Moderators, Stars and other best users

Spammers please stay away.

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \:  \frac{1 - cos2x}{cos2x - cos4x} \: }

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{1 - 1}{1 - 1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, to evaluate

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \:  \frac{1 - cos2x}{cos2x - cos4x} \: }

We know

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }}

\boxed{ \tt{ \: cosx - cosy =2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg] \: }}

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0} \:  \frac{ {2sin}^{2} x}{2sin\bigg[\dfrac{2x + 4x}{2} \bigg]sin\bigg[\dfrac{4x - 2x}{2} \bigg]}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \:  \frac{ {sin}^{2} x}{sin\bigg[\dfrac{ 6x}{2} \bigg]sin\bigg[\dfrac{2x}{2} \bigg]}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \frac{ {sin}^{2} x}{sin3x \: sinx}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \frac{sinx}{sin3x}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} \times x \times \displaystyle\lim_{x \to 0} \frac{3x}{sin3x} \times \dfrac{1}{3x}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}   \times \displaystyle\lim_{x \to 0} \frac{3x}{sin3x} \times \dfrac{1}{3}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x} \:  =  \: 1 \: }}

So, using this, we get

\rm \:  =  \: 1 \times 1 \times \dfrac{1}{3}

\rm \:  =  \: \dfrac{1}{3}

Therefore,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{1 - cos2x}{cos2x - cos4x} \: } =  \frac{1}{3}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{tanx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{log(1 + x)}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }}

Similar questions