Math, asked by devansh9257, 8 hours ago

Evaluate the following

lim \: x \to \: 0 \:  \frac{cos3x - cosx}{cos7x - cos5x}

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \displaystyle \tt{ \lim_{x \rarr0  } \:  \dfrac{ cos(3x) - cos(x)  }{ cos(7x) -  cos(5x)  }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{  - 2 \: sin \left( \dfrac{3x + x}{2} \right) sin \left( \dfrac{3x  -  x}{2} \right) }{  - 2 \: sin \left( \dfrac{7x +5x}{2} \right)  sin \left( \dfrac{7x  -5  x}{2} \right)  }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{   sin \left( \dfrac{4x}{2} \right) sin \left( \dfrac{2x  }{2} \right) }{   sin \left( \dfrac{12x}{2} \right)  sin \left( \dfrac{2x}{2} \right)  }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{   sin \left(2x \right) sin \left(x\right) }{   sin \left( 6x \right)  sin \left(x \right)  }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{   sin \left(2x \right)  }{   sin \left( 6x \right)   }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{   sin \left(2x \right) }{x}  \cdot\dfrac{x }{   sin \left( 6x \right)   }  }

 \displaystyle \tt{  = \lim_{x \rarr0  } \:  \dfrac{ 2 \cdot  sin \left(2x \right) }{2x}  \cdot\dfrac{6x }{6 \cdot   sin \left( 6x \right)   }  }

 \displaystyle \tt{  =  \dfrac{2}{6}  \: \lim_{x \rarr0  } \:  \dfrac{sin \left(2x \right) }{2x}  \cdot \lim _{x \to0}\dfrac{6x }{ sin \left( 6x \right)   }  }

 \displaystyle \tt{  =  \dfrac{2}{6}   \cdot1 \cdot1  }

 \displaystyle \tt{  =  \dfrac{1}{3}     }

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cos3x - cosx}{cos7x - cos5x}

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{cos0 - cos0}{cos0 - cos0}

\rm \:  =  \: \dfrac{1 - 1}{1 - 1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cos3x - cosx}{cos7x - cos5x}

We know, By L - Hospital Rule we have

\rm \:  =  \: \:\displaystyle\lim_{x \to 0}\rm  \frac{\dfrac{d}{dx}cos3x - \dfrac{d}{dx}cosx}{\dfrac{d}{dx}cos7x -\dfrac{d}{dx} cos5x}

We know,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}cosx \: =  \:   -  \: sinx}}

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ - sin3x \times 3 + sinx}{ - sin7x \times 7 + sin5x \times 5}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ - 3sin3x + sinx}{ - 7sin7x  + 5sin5x }

If we substitute x = 0, we again get indeterminant form.

So, again using L - Hospital Rule, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ - 3\dfrac{d}{dx}sin3x + \dfrac{d}{dx}sinx}{ - 7\dfrac{d}{dx}sin7x  + 5\dfrac{d}{dx}sin5x }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ - 9cos3x + cosx}{ - 49cos7x + 25cos5x}

\rm \:  =  \: \dfrac{ - 9cos0 + cos0}{ - 49cos0 + 25cos0}

\rm \:  =  \: \dfrac{ - 9 + 1}{ - 49 + 25}

\rm \:  =  \: \dfrac{ - 8}{ - 24}

\rm \:  =  \: \dfrac{1}{3}

Hence,

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{cos3x - cosx}{cos7x - cos5x} =  \frac{1}{3}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions