Math, asked by madhav5245, 5 hours ago

Evaluate the following

lim \: x \to \: 0 \:  \frac{cosx - cos2x}{1 - cosx}

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{cos0 - cos0}{1 - cos0}

\rm \:  =  \: \dfrac{1 - 1}{1 - 1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}

We know,

\boxed{\tt{ cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg]}}

And

\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x \: }}

So, using these Identities, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{2sin\bigg[\dfrac{x + 2x}{2} \bigg]sin\bigg[\dfrac{2x - x}{2} \bigg]}{ {2sin}^{2}  \dfrac{x}{2} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin\bigg[\dfrac{3x}{2} \bigg]sin\bigg[\dfrac{x}{2} \bigg]}{ {sin}^{2}  \dfrac{x}{2} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin\bigg[\dfrac{3x}{2} \bigg]}{sin \dfrac{x}{2} }

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{sin\bigg[\dfrac{3x}{2} \bigg]}{\dfrac{3x}{2} }  \times \dfrac{3x}{2} \times \dfrac{\dfrac{x}{2}}{sin\dfrac{x}{2} }  \times \dfrac{2}{x}

We know,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  = 1 \: }}

So, using this identity, we get

\rm \:  =  \: 1 \times 3 \times 1

\rm \:  =  \: 3

Hence,

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}  = 3}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x}  - 1}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x}  - 1}{x}  = loga \: }}

Answered by itzMeGunjan
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{cos0 - cos0}{1 - cos0}

\rm \:  =  \: \dfrac{1 - 1}{1 - 1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}

We know,

\boxed{\tt{ cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg]}}

And

\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x \: }}

So, using these Identities, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{2sin\bigg[\dfrac{x + 2x}{2} \bigg]sin\bigg[\dfrac{2x - x}{2} \bigg]}{ {2sin}^{2}  \dfrac{x}{2} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin\bigg[\dfrac{3x}{2} \bigg]sin\bigg[\dfrac{x}{2} \bigg]}{ {sin}^{2}  \dfrac{x}{2} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin\bigg[\dfrac{3x}{2} \bigg]}{sin \dfrac{x}{2} }

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{sin\bigg[\dfrac{3x}{2} \bigg]}{\dfrac{3x}{2} }  \times \dfrac{3x}{2} \times \dfrac{\dfrac{x}{2}}{sin\dfrac{x}{2} }  \times \dfrac{2}{x}

We know,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  = 1 \: }}

So, using this identity, we get

\rm \:  =  \: 1 \times 3 \times 1

\rm \:  =  \: 3

Hence,

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{cosx - cos2x}{1 - cosx}  = 3}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x}  - 1}{x}  = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x}  - 1}{x}  = loga \: }}

Similar questions