Math, asked by guptaananya2005, 8 hours ago

Evaluate the following :

 \sf \:  \int \:  \frac{dx}{secx + cosecx}
Quality answer needed.

Moderators, genius or Brainly stars please answer it.

Spammers please far away.

Its a humble request.

Answers

Answered by MathHacker001
16

Question :-

Evaluate :  \rm{ \int  \frac{dx}{  \sec x  + \cos \sec x} } \\

Solution :-

\small\rm:\longmapsto{ \int \frac{dx}{ \frac{1}{ \cos x}  +  \frac{1}{ \sin x} } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\rm:\longmapsto{ \frac{1}{2}  \times  \int \frac{2 \sin x \cos x}{ \sin x  + \cos x}dx } \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\rm:\longmapsto{ \frac{1}{2} \int \frac{(1 +  \sin 2x) - 1}{ \sin x +  \cos x} dx }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\ \small\rm:\longmapsto{ \frac{1}{2} \int \frac{( \sin x  +  \cos  x) {}^{2} - 1 }{ \sin x +  \cos x} dx }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:   \\  \\ \small\rm:\longmapsto{ \frac{1}{2}  \int ( \sin x +  \cos x)dx -  \frac{1}{2}  \int \frac{dx}{ \sin x  +  \cos x} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \small\rm:\longmapsto{ \frac{1}{2 } \int( \sin x +  \cos  x)dx -  \frac{1}{2} \int \frac{dx}{ \sqrt{2} \sin \bigg( x + \frac{\pi}{4}   \bigg) }  }  \:  \:  \:  \:  \: \\  \\ \small\rm:\longmapsto{ \frac{1}{2}  \int( \sin x +  \cos x)dx -  \frac{1}{2 \sqrt{2} }  \int \csc \bigg(x +  \frac{\pi}{4}  \bigg)dx } \\  \\ \\  \tiny\rm:\longmapsto \pink{{ \boxed{  \rm{ \frac{1}{2} ( \sin x -  \cos x) -  \frac{1}{2 \sqrt{2} }ln  \bigg |  \csc \bigg(x +  \frac{\pi}{4}   \bigg) -  \cot \bigg(x +  \frac{\pi}{4} \bigg)    \bigg|   + c}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int  \frac{dx}{secx + cosecx}}

Let assume that,

\red{\rm :\longmapsto\:I \:  =  \: \displaystyle\int  \frac{dx}{secx + cosecx}}

{\rm :\longmapsto\:I \:  =  \: \displaystyle\int  \frac{dx}{\dfrac{1}{cosx}  + \dfrac{1}{sinx} }}

{\rm :\longmapsto\:I \:  =  \: \displaystyle\int  \frac{dx}{\dfrac{sinx + cosx}{sinx \: cosx}}}

\rm :\longmapsto\:I = \displaystyle\int  \frac{sinxcosx \: dx}{sinx + cosx}

On multiply and divide by 2, we get

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int  \frac{2sinxcosx \: dx}{sinx + cosx}

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int  \frac{1 + 2sinxcosx  - 1}{sinx + cosx}  \: dx

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int  \frac{ {sin}^{2}x +  {cos}^{2}x + 2sinxcosx  - 1}{sinx + cosx}  \: dx

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int  \frac{  {(sinx + cosx)}^{2}  - 1}{sinx + cosx}  \: dx

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int  \frac{  {(sinx + cosx)}^{2}}{sinx + cosx}  \: dx - \frac{1}{2}  \displaystyle\int  \frac{1}{sinx + cosx}dx

\rm :\longmapsto\:I =\dfrac{1}{2}  \displaystyle\int [sinx + cosx]  \: dx - \frac{1}{2}  \displaystyle\int  \frac{1}{sinx + cosx}dx

Let assume that,

\red{\rm :\longmapsto\:I = I_1 - I_2} -  -  - (1)

where,

\rm :\longmapsto\:I_1 = \dfrac{1}{2}\displaystyle\int [sinx + cosx] \: dx

and

\rm :\longmapsto\:I_2 = \dfrac{1}{2}\displaystyle\int  \frac{1}{sinx + cosx} \: dx

Consider,

\rm :\longmapsto\:I_2 = \dfrac{1}{2}\displaystyle\int  \frac{1}{sinx + cosx} \: dx

\rm :\longmapsto\:I_2 = \dfrac{1}{2 \sqrt{2} }\displaystyle\int  \frac{1}{\dfrac{1}{ \sqrt{2} } sinx + \dfrac{1}{ \sqrt{2} } cosx} \: dx

\rm :\longmapsto\:I_2 = \dfrac{1}{2 \sqrt{2} }\displaystyle\int  \frac{1}{cos\dfrac{\pi}{ 4 } sinx + sin\dfrac{\pi}{ 4 } cosx} \: dx

We know

 \boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

So, using this

\rm :\longmapsto\:I_2 = \dfrac{1}{2 \sqrt{2} }\displaystyle\int  \frac{1}{sin\bigg(x + \dfrac{\pi}{ 4 } \bigg)} \: dx

\rm :\longmapsto\:I_2 = \dfrac{1}{2 \sqrt{2} }\displaystyle\int  cosec\bigg(x + \dfrac{\pi}{ 4 }\bigg) \: dx

We know,

 \boxed{ \bf{ \: \displaystyle\int cosecx \: dx \:  =  \: log \: tan \frac{x}{2} + c}}

\rm :\longmapsto\:I_2 = \dfrac{1}{2 \sqrt{2} } \: log \: tan\bigg(\dfrac{x}{2}  + \dfrac{\pi}{ 8 }\bigg) \: + c_2 -  -  - (2)

Now Consider,

\rm :\longmapsto\:I_1 = \dfrac{1}{2}\displaystyle\int [sinx + cosx] \: dx

\rm :\longmapsto\:I_1 =  - cosx + sinx + c_1 -  -  - (2)

Hence, On substituting the values of equation (2) and (3) in equation (1), we get

\rm :\longmapsto\:I= -\dfrac{1}{2 \sqrt{2} } \: log \: tan\bigg(\dfrac{x}{2}  + \dfrac{\pi}{8}\bigg)-c_2 +\dfrac{1}{2}\bigg[ - cosx + sinx\bigg] + c_1

\rm :\longmapsto\:I= -\:\dfrac{1}{2 \sqrt{2} } \: log \: tan\bigg(\dfrac{x}{2}  + \dfrac{\pi}{8}\bigg) + \dfrac{1}{2}\bigg[ - cosx + sinx\bigg] +c

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions