Math, asked by nagpalalisha1907, 1 day ago

Evaluate the following

 {sin}^{ - 1} (sin5)

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given inverse Trigonometric function is

\rm :\longmapsto\: {sin}^{ - 1}(sin5)

We know,

\boxed{\tt{ {sin}^{ - 1}(sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2},\dfrac{\pi}{2}\bigg]}}

And

\boxed{\tt{5 \:  \:  \cancel \in \: \bigg[ - \dfrac{\pi}{2},\dfrac{\pi}{2}\bigg]}}

We know,

 \purple{\rm :\longmapsto\: {1}^{c}  \approx57 \degree}

So,

 \purple{\rm :\longmapsto\: {5}^{c}  \approx285 \degree}

\rm\implies \:\dfrac{3\pi}{2}  < 5 < 2\pi

\rm\implies \: - \dfrac{3\pi}{2}   >  -  5  >   - 2\pi

\rm\implies \:2\pi - \dfrac{3\pi}{2}   >  2\pi-  5  > 2\pi  - 2\pi

\rm\implies \: \dfrac{\pi}{2}   >  2\pi-  5  > 0

\bf\implies \:0 < 2\pi - 5 < \dfrac{\pi}{2}

So,

\bf\implies \:sin(2\pi - 5) =  - sin5

\bf\implies \: sin5 =  - sin(2\pi - 5)

So, Given expression

\rm :\longmapsto\: {sin}^{ - 1}(sin5)

can be rewritten as

\rm \:  =  \: \: {sin}^{ - 1}\bigg[ - sin(2\pi - 5) \bigg]

\rm \:  =  \: \:  - {sin}^{ - 1}\bigg[sin(2\pi - 5) \bigg]

\rm \:  =  \:  - (2\pi - 5)

\rm \:  =  \: 5 - 2\pi

Hence,

 \purple{\rm\implies \:\boxed{\tt{ {sin}^{ - 1}(sin5) = 5 - 2\pi \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ {sin}^{ - 1}(sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2},\dfrac{\pi}{2}\bigg]}}

\boxed{\tt{ {tan}^{ - 1}(tanx) = x \:  \: if \: x \in \: \bigg( - \dfrac{\pi}{2},\dfrac{\pi}{2}\bigg)}}

\boxed{\tt{ {cos}^{ - 1}(cosx) = x \:  \: if \: x \in \: \bigg[0, \: \pi\bigg]}}

Similar questions