Math, asked by guptaprincess029, 4 hours ago

Evaluate the following

\sum_{n=0}^{infty} \frac{ {n}^{2} }{n!}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Before start solving the problem, Lets recall

We know that,

\rm :\longmapsto\: {e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!} +  \dfrac{ {x}^{3} }{3!} +   -  -  -  -

can be further expressed as

\rm :\longmapsto\: {e}^{x} = \displaystyle\sum_{n=0}^{\infty} \frac{ {x}^{n} }{n!}

So, on substituting x = 1, we get

\rm :\longmapsto\: e = \displaystyle\sum_{n=0}^{\infty} \frac{1}{n!} = 1 +  \dfrac{1}{1!} +  \dfrac{1}{2!} +  -  -  -  -

Let's solve the problem now!!!

Given expression is

\rm :\longmapsto\:\displaystyle\sum_{n=0}^{\infty} \frac{ {n}^{2} }{n!}

which can be rewritten as

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{ {n}^{2} }{n(n - 1)!}

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{ n }{(n - 1)!}

can be rewritten as

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{ n  - 1 + 1}{(n - 1)!}

can be further split as

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{ n  - 1}{(n - 1)!}  + \displaystyle\sum_{n=0}^{\infty} \frac{1}{(n - 1)!}

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{ n  - 1}{(n - 1)(n - 2)!}  +\bigg(1 + \dfrac{1}{1!}  + \dfrac{1}{2!}  +  -  -  \bigg)

 \rm \:  =  \: \displaystyle\sum_{n=0}^{\infty} \frac{1}{(n - 2)!}  +e

 \rm \:  =  \: \bigg(1 + \dfrac{1}{1!}  + \dfrac{1}{2!}  +  -  -  \bigg)   + e

 \rm \:  =  \: e + e

 \rm \:  =  \: 2e

Hence,

 \\ \rm :\longmapsto\: \:  \: \boxed{\tt{  \:  \:  \:  \:  \: \displaystyle\sum_{n=0}^{\infty} \frac{ {n}^{2} }{n!} = 2e  \:  \: \:  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more

\rm :\longmapsto\: e = \displaystyle\sum_{n=0}^{\infty} \frac{1}{n!} = 1 +  \dfrac{1}{1!} +  \dfrac{1}{2!} +  -  -  -  -

\rm :\longmapsto\:  {e}^{ - 1}  = \displaystyle\sum_{n=0}^{\infty} \frac{ {( - 1)}^{n - 1} }{n!} = 1  -   \dfrac{1}{1!} +  \dfrac{1}{2!}  -   -  -  -  -

\rm :\longmapsto\:\dfrac{e +  {e}^{ - 1} }{2} = 1 + \dfrac{1}{2!}  + \dfrac{1}{4!} +  -  -  -

\rm :\longmapsto\:\dfrac{e  -   {e}^{ - 1} }{2} = 1 + \dfrac{1}{3!}  + \dfrac{1}{5!} +  -  -  -

Similar questions