Math, asked by aryan021212, 1 day ago

Evaluate the following to n terms

\frac{1}{1 - 3. {1}^{2}  +  {1}^{4} } + \frac{2}{1 - 3. {2}^{2}  +  {2}^{4} } + \frac{3}{1 - 3. {3}^{2}  +  {3}^{4} } + ...

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given series is

\rm \: \dfrac{1}{1 - 3. {1}^{2} + {1}^{4} } + \dfrac{2}{1 - 3. {2}^{2} + {2}^{4} } + \dfrac{3}{1 - 3. {3}^{2} + {3}^{4} } + ...

can be rewritten as

\rm \:S_n =  \dfrac{1}{1 - 3. {1}^{2} + {1}^{4} } + \dfrac{2}{1 - 3. {2}^{2} + {2}^{4} } + \dfrac{3}{1 - 3. {3}^{2} + {3}^{4} } + ...

can be further rewritten as

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{1 - 3. {k}^{2} + {k}^{4} } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{{k}^{4} -  {3k}^{2} + 1 } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{{k}^{4} -  {2k}^{2}  -  {k}^{2} + 1 } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{{k}^{4} -  {2k}^{2} + 1  -  {k}^{2} } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{({k}^{4} -  {2k}^{2} + 1)  -  {k}^{2} } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{ {( {k}^{2}  - 1)}^{2}   -  {k}^{2} } \\

\rm \:S_n =\displaystyle\sum_{k=1}^n\rm   \dfrac{k}{( {k}^{2}  + k - 1)( {k}^{2}  -k - 1)} \\

\rm \:S_n = \frac{1}{2} \displaystyle\sum_{k=1}^n\rm   \dfrac{2k}{( {k}^{2}  + k - 1)( {k}^{2}  -k - 1)} \\

\rm \:S_n = \frac{1}{2} \displaystyle\sum_{k=1}^n\rm   \dfrac{k + k+{k}^{2}-{k}^{2} + 1 - 1}{( {k}^{2}  + k - 1)( {k}^{2}  -k - 1)} \\

\rm \:S_n = \frac{1}{2} \displaystyle\sum_{k=1}^n\rm   \dfrac{( {k}^{2} + k - 1) - ( {k}^{2} - k - 1) }{( {k}^{2}  + k - 1)( {k}^{2}  -k - 1)} \\

\rm \:S_n = \frac{1}{2} \displaystyle\sum_{k=1}^n\rm \bigg(\dfrac{1}{ {k}^{2}  - k - 1}  - \dfrac{1}{ {k}^{2}  + k - 1}  \bigg)  \\

So, it means

\rm \:T_k = \dfrac{1}{2}  \bigg(\dfrac{1}{ {k}^{2}  - k - 1}  - \dfrac{1}{ {k}^{2}  + k - 1}  \bigg)  \\

On substituting k = 1, 2, 3, ...,n, we have

\rm \:T_1 = \dfrac{1}{2}  \bigg(\dfrac{1}{ - 1}  - \dfrac{1}{1}  \bigg)  \\

\rm \:T_2 = \dfrac{1}{2}  \bigg(\dfrac{1}{1}  - \dfrac{1}{5}  \bigg)  \\

\rm \:T_3 = \dfrac{1}{2}  \bigg(\dfrac{1}{5}  - \dfrac{1}{11}  \bigg)  \\

.

.

.

.

\rm \:T_n = \dfrac{1}{2}  \bigg(\dfrac{1}{ {n}^{2}  - n - 1}  - \dfrac{1}{ {n}^{2}  + n - 1}  \bigg)  \\

So,

\rm \: S_n = T_1 + T_2 + T_3 +  \cdots + T_n \\

\rm \:S_n = \dfrac{1}{2}  \bigg( - 1 - 1 + \dfrac{1}{1}  - \dfrac{1}{5}  +  \frac{1}{5}  -  \frac{1}{11} +  \cdots + \dfrac{1}{ {n}^{2}  -  n - 1} - \dfrac{1}{ {n}^{2} + n - 1}  \bigg)  \\

\rm \:S_n = \dfrac{1}{2}  \bigg( - 1 - \dfrac{1}{ {n}^{2} +  n - 1}  \bigg)  \\

\rm \:S_n = \dfrac{1}{2}  \bigg(\dfrac{ -  {n}^{2} - n + 1 -  1}{ {n}^{2} +  n - 1}  \bigg)  \\

\rm \:S_n = \dfrac{1}{2}  \bigg(\dfrac{ -  {n}^{2} - n}{ {n}^{2} +  n - 1}  \bigg)  \\

\rm \:S_n =  \:  -  \: \dfrac{1}{2}  \bigg(\dfrac{{n}^{2} +  n}{ {n}^{2} +  n - 1}  \bigg)  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:S_n =  \:  -  \: \dfrac{1}{2}  \bigg(\dfrac{{n}^{2} +  n}{ {n}^{2} +  n - 1}  \bigg) \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm 1 = n \: }} \\

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm k =   \frac{n(n + 1)}{2} \: }} \\

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm  {k}^{2}  =   \frac{n(n + 1)(2n + 1)}{6} \: }} \\

\boxed{ \rm{ \:\displaystyle\sum_{k=1}^n\rm  {k}^{3}  =    {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}  \: }} \\

Similar questions