CBSE BOARD X, asked by rheanoronha006, 19 days ago

Evaluate the following using appropriate identities

1) (103)³
2) 98x102​

Answers

Answered by Anonymous
0

Explanation:

 \bold \color{red}{ \mathfrak{question : }}

1) \:  \: (  {103)}^{3}

2) \:  \:  \: 98 \times 102

 \bold \color{blue}{ \mathfrak{solution : }}

 = ( {103)}^{3}

use the identity: (a+b)^3 = a^3 + b^3 + 3a^b + 3ab^2.

 = (100 + 3 {)}^{3}

 = (  {100)}^{3}  + ( {3)}^{3}  + 3 \times  {100}^{2}  \times 3 + 3 \times 100 \times  {3}^{2}

 = 1000000 + 27 + 3 \times 10000 \times 3 + 300 \times 9

 = 1000027 + 90000 + 2700

 = 1000027 + 92700

 = 1092727

 \colorbox{red}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \colorbox{lime}{ \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \: } \colorbox{magenta}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 = 98 \times 102

 = (100 - 2)(100 + 2)

use identity: (a-b)(a+b) = a^2 - b^2.

 = (100 {)}^{2}  - (2 {)}^{2}

 = 10000 - 4

 = 9996

Answered by rutvikshinde7444
0

Answer:

103 3% and 1 is right answer

Similar questions