Math, asked by arkomoitra7905, 2 months ago

Evaluate the following using log tables (5.364)^(3)×(49.76)^(1)/(2)/(83.28)(1)/(2)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{ {(5.364)}^{3}  \times  \sqrt{49.76} }{ \sqrt{83.28} }

Let assume that

\rm :\longmapsto\:y = \dfrac{ {(5.364)}^{3}  \times  \sqrt{49.76} }{ \sqrt{83.28} }

Taking log on both sides, we get

\rm :\longmapsto\:logy =log\bigg( \dfrac{ {(5.364)}^{3}  \times  \sqrt{49.76} }{ \sqrt{83.28} }\bigg)

We know,

 \boxed{ \bf{ \:  log( \frac{x}{y} ) = logx - logy}}

So, using this,

\rm \:  =  \:  \:log( {(5.364)}^{3} \times  \sqrt{49.76}) - log \sqrt{83.28}

We know,

 \boxed{ \bf{ \:  log(xy ) = logx +  logy}}

So, using this,

\rm \:  =  \:  \:log( {5.364)}^{3} +log   \sqrt{49.76} - log \sqrt{83.28}

We know,

 \boxed{ \bf{ \:  log( {x}^{y} ) =y logx}}

So, using this,

\rm \:  =  \:  \:3log(5.364) + \dfrac{1}{2}log(49.76) -  \dfrac{1}{2}log(83.28)

Now, using log tables,

\rm :\longmapsto\:log(5.364) = 0.7295

\rm :\longmapsto\:log(49.76) = 1.6969

\rm :\longmapsto\:log(83.28) = 1.9205

So, on substituting these values,

\rm \:  =  \:  \:3(0.7295) + \dfrac{1}{2}(1.6969) -  \dfrac{1}{2}(1.9205)

\rm \:  =  \:  \:2.1885 + 0.84845 -  \dfrac{1}{2}(1.9205) - 0.96025

\rm \:  =  \:  \:2.0767

\bf\implies \:logy  =  \:  \:2.0767

So,

\bf\implies \:y  =  \: antilog( \:2.0767)

\rm \:  =  \:  \: {10}^{2} \times 1.193

\rm \:  =  \:  \:119.3

Hence,

 \boxed{\bf :\longmapsto\:\dfrac{ {(5.364)}^{3}  \times  \sqrt{49.76} }{ \sqrt{83.28} }  = 119.3 \quad}

Similar questions