Math, asked by aryan021212, 2 days ago

Evaluate the following using properties of integration

 \int_{0}^{4} ( |x - 1|  +  |x - 2| ) dx \\

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{0}^{4} ( |x - 1| + |x - 2| ) dx \\

Let assume that

\rm \:f(x) =  |x - 1| + |x - 2|  \\

Let first define the function by using definition of Modulus function.

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - (x - 1) - (x - 2), \:  \:  \:0 \leqslant x \leqslant 1 } \\ &\sf{ \:  \:  \: (x - 1) - (x - 2), \:  \:  \: 1 \leqslant x \leqslant 2}\\ &\sf{ \:  \:  \: (x - 1) + (x - 2), \:  \:  \: 2 \leqslant x \leqslant 4} \end{cases}\end{gathered}\end{gathered}

can be further simplified as

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - 2x + 3, \:  \:  \:0 \leqslant x \leqslant 1 } \\ &\sf{ \:  \:  \:  \:  \:  \:  \:  \: 1,  \:  \:  \: \:  \:  \: 1 \leqslant x \leqslant 2}\\ &\sf{ \:  \:  \: 2x - 3, \:  \:  \: 2 \leqslant x \leqslant 4} \end{cases}\end{gathered}\end{gathered} \\

Now, Consider

\rm \: \displaystyle\int_{0}^{4} f(x) dx \\

\rm \:  =  \: \displaystyle\int_{0}^{1} f(x) dx + \displaystyle\int_{1}^{2} f(x) dx + \displaystyle\int_{2}^{4} f(x) dx \\

\rm \:  =  \: \displaystyle\int_{0}^{1} ( - 2x + 3) dx + \displaystyle\int_{1}^{2} 1 dx + \displaystyle\int_{2}^{4} (2x - 3) dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm  {x}^{n} \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

So, using this result we get

\rm \:  =  \: \bigg( -  {x}^{2} + 3x \bigg)_0^1 +  \bigg(x\bigg)_1^2  + \bigg( {x}^{2}  - 3x\bigg)_2^4

\rm \:  =  \: \bigg( - 1 + 3\bigg)  + \bigg(2 - 1 \bigg)  + \bigg((16 - 12) - (4 - 6) \bigg)  \\

\rm \:  =  \: 2 + 1+ 6  \\

\rm \:  =  \: 9 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_{0}^{4} ( |x - 1| + |x - 2| ) dx  = 9 \:  \: }}\\

\rule{190pt}{2pt}

Additional Information

\boxed{ \rm{ \:\displaystyle\int_{a}^{b} f(x) dx \:  =  \:  -  \: \displaystyle\int_{b}^{a} f(x) dx}} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b} f(x) dx \:  =  \: \displaystyle\int_{a}^{b} f(y) dy}} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{a} f(x) dx \:  =  \: \displaystyle\int_{0}^{a} f(a - x) dx}} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b} f(x) dx \:  =  \: \displaystyle\int_{a}^{b} f(a + b - x) dx}} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a} f(x) dx \:  =  0, \:  \: \rm \: if \: f( - x) =  - f(x)}} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a} f(x) dx \:  =  2\displaystyle\int_{0}^{a} f(x) dx, \:  \: \rm \: if \: f(x) = f(x)}} \\

Similar questions