evaluate the following using suitable identities : a) (99)cube b) (102) cube c) (998)cube
Answers
Answered by
343
It is known that,
(a+b)3=a3+b3+3ab(a+b)and(a−b)3=a3−b3−3ab(a−b)
(i) (99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100) (1) (100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299
(ii) (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208
(iii) (998)3= (1000 − 2)3
= (1000)3 − (2)3 − 3(1000) (2) (1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992
(a+b)3=a3+b3+3ab(a+b)and(a−b)3=a3−b3−3ab(a−b)
(i) (99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100) (1) (100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299
(ii) (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208
(iii) (998)3= (1000 − 2)3
= (1000)3 − (2)3 − 3(1000) (2) (1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992
muskaan43:
thanks for spending time on my question
Answered by
55
Answer:
Step-by-step explanation:
(99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100) (1) (100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299
(102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208
(998)3= (1000 − 2)3
= (1000)3 − (2)3 − 3(1000) (2) (1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992
pls mark as brailiest
Similar questions