Evaluate the following using suitable identities. (i) (2x+1)³ (ii) (2a-3b)³ (iii) (x+2y+42)² (iv) (102) (v) (998)¹
Answers
Please mark me as brainlist
We know,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
i) (x+2y+4z)2
=x2+(2y)2+(4z)2+2(x)(2y)+2(2y)(4z)+2(x)(4z)
=x2+4y2+16z2+4xy+16yz+8xz
ii) (2x−y+z)2
=(2x)2+(−y)2+(z)2+2(2x)(−y)+2(−y)(z)+2(2x)(z)
=4x2+y2+z2−4xy−2yz+4xz
iii) (−2x+3y+2z)2
=(−2x)2+(3y)2+(2z)2+2(−2x)(3y)
Step-by-step explanation:
(x + y)³ = x³ + y³ + 3xy(x + y)
(x - y)³ = x³ - y³ - 3xy(x - y)
i) (2x + 1)³
Identity: (x + y)³ = x³ + y³ + 3xy(x + y)
Here x = 2x, y = 1
(2x +1)³ = (2x)³ + (1)³ + 3(2x)(1)(2x + 1)
= 8x³ + 1 + 6x(2x + 1)
= 8x³ + 1 + 12x² + 6x
= 8x³ + 12x² + 6x +1
ii) (2a - 3b)³
Identity: (x - y)³ = x³ - y³ - 3xy(x - y)
Here x = 2a, y = 3b
(2a - 3b)³ = (2a)³ - (3b)³ - 3(2a)(3b)(2a - 3b)
= 8a³ - 27b3 - 18ab(2a - 3b)
= 8a³ - 27b³ - 36a²b + 54ab²
= 8a³ - 36a²b + 54ab² - 27b³
(x+y+z) 2 =x 2 +y 2 +z 2+2xy+2yz+2xz
Therefore, the value of (x+2y+4z) 2 is=
x 2 +(2y) 2 +(4z) 2
+2(x)(2y)+2(2y)(4z)+2(x)(4z)
=x 2 +4y 2 +16z 2 +4xy+16yz+8xz