Evaluate the following :
(v)
(vi)
(vii)cosec 31° − sec 59°
(viii)(sin 72° + cos 18°) (sin 72° − cos 18°)
Answers
(v) SOLUTION :
Given :
tan 35° /cot 55° + cot 78°/tan 12° −1
= tan (90° - 55°) / cot 55° + cot (90° - 12°) /tan 12° - 1
= cot 55° / cot 55° + tan 12° / tan 12° - 1
[tan (90° – θ) = cot θ and cot(90° – θ) = tanθ]
= 1 + 1 -1
= 2 -1
tan 35° /cot 55° + cot 78°/tan 12° −1 = 1
Hence, the value of tan 35° /cot 55° + cot 78°/tan 12° − 1 is 1.
(vi) SOLUTION :
Given : sec 70° / cosec 20° + sin 59° / cos31°
sec 70° / cosec 20° + sin 59° / cos 31° = (sec(90°−20°)/ cosec 20°) – (sin(90°−31°)/cos 31°)
= cosec20° /cosec20°+ cos31°/cos31°
[sec(90° − θ) = cosec θ and sin (90 - θ) = Cos θ]
=1 + 1
= 2
Hence, the value of sec 70° / cosec 20° + sin 59° / cos31° is 2.
(vii) SOLUTION :
Given : cosec 31°− sec 59°
cosec 31°− sec 59° = cosec(90°−59°)− sec59°
=sec 59°− sec 59°
[cosec(90° − θ)=sec θ]
cosec 31°− sec 59° = 0
Hence, the value of cosec 31°− sec 59° is 0.
(viii) SOLUTION :
Given : (sin 72° + cos 18°) (sin 72° − cos 18°)
(sin 72° + cos 18°) (sin 72° − cos 18°) = (sin 72°)² – (cos 18°)²
[(a+b) (a -b) = a² - b²]
= sin(90°−18°)² −(cos 18°)²
= (cos18°)²– (cos18°)²
[sin (90 - θ) = Cos θ]
=cos²18°− cos²18° = 0
(sin 72° + cos 18°) (sin 72° − cos 18°) = 0
Hence, the value of (sin 72° + cos 18°) (sin 72° − cos 18°) is 0.
HOPE THIS ANSWER WILL HELP YOU…..