Math, asked by bip5791, 1 month ago

evaluate the following x = 4 10 + x² =​

Answers

Answered by mrnickname50
6

\huge[Answer]

Plz mark brainlist :)

⇒  3x2−x−10=(x−2)(3x+5)

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get 

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,=2+23(2)+5

⇒  3x2−x−10=(x−2)(3x+5)⇒  x2−4=(x−2)(x+2)∴  Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,=2+23(2)+5=411

Similar questions