evaluate the following x = 4 10 + x² =
Answers
Plz mark brainlist :)
⇒ 3x2−x−10=(x−2)(3x+5)
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,=2+23(2)+5
⇒ 3x2−x−10=(x−2)(3x+5)⇒ x2−4=(x−2)(x+2)∴ Substituting it in the equation we get x→2lim(x−2)(x+2)(x−2)(3x+5)=x→2lim(x+2)(3x+5)Now substituting the limit we get,=2+23(2)+5=411