Math, asked by aryan021212, 9 days ago

EVALUATE THE FOLLOWING

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

\displaystyle \bf { \sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k} }

TOPIC : BINOMIAL THEOREM WITH USE OF INTEGRATION​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given summation is

\rm :\longmapsto\:\displaystyle \sf { \sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k} }

can also be rewritten as

\rm \:  =  \: \displaystyle \sf { \sum \limits^{n} _{k = 1}  \: ^nC_{k} \frac{( - 1) ^{k - 1} }{k} }

can be further open as

\rm \:  =  \: ^nC_{1} - \dfrac{^nC_{2}}{2} + \dfrac{^nC_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: ^nC_{n}}{n}

can also be rewritten as

\rm \:  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

So, it means

\rm \:\displaystyle \sf { \sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k} }  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  - + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

Now, we know that

\rm :\longmapsto\: {(1 - x)}^{n} = C_{0} - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

\rm :\longmapsto\: {(1 - x)}^{n} =1 - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

\rm :\longmapsto\: {(1 - x)}^{n} - 1 =  - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

On dividing by (-1), we get

\rm :\longmapsto\: 1 - {(1 - x)}^{n} = C_{1}x  - C_{2} {x}^{2}  -   -  -  +  {( - 1)}^{n - 1} C_{n}

On dividing both sides by x, we get

\rm :\longmapsto\: \dfrac{1 - {(1 - x)}^{n}}{x}  = C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 2} C_{n} {x}^{n - 1}

Now on integrating both sides between the limits x = 0 and x = 1, we get

\rm :\longmapsto\:\displaystyle\int_0^1\dfrac{1 - {(1 - x)}^{n}}{x}  = \displaystyle\int_0^1C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 2} C_{n} {x}^{n - 1}

Now, Consider LHS of above integral

\rm :\longmapsto\:\displaystyle\int_0^1\dfrac{1 - {(1 - x)}^{n}}{x}

To integrate such integral, we use method of Substitution

So, Substitute

\rm :\longmapsto\:1 - x = y

\rm :\longmapsto\:- dx = dy

\rm :\longmapsto\:dx = -  dy

So, above expression can be rewritten as

\rm \:  =  \:  - \displaystyle\int_{1}^0 \frac{1 - {y}^{n}}{1 - y} dy

\rm \:  =  \: \displaystyle\int_{0}^1 \frac{1 - {y}^{n}}{1 - y} dy

Using Binomial theorem, we have

\rm \:  =  \: \displaystyle\int_{0}^1 (1 + y +  {y}^{2} +  -  -  -  +  {y}^{n - 1}) \: dy

\rm \:  =  \: \bigg[y + \dfrac{ {y}^{2} }{2} + \dfrac{ {y}^{3} }{3}  +  -  -  -  + \dfrac{ {y}^{n} }{n}  \bigg]_{0}^1

\rm \:  =  \: 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}

Now, Consider RHS of above integral

\rm :\longmapsto \:  \displaystyle\int_0^1C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n - 1}

\rm \:  =  \: \bigg[C_{1}x  - C_{2}\dfrac{ {x}^{2} }{2} + C_{3}\dfrac{ {x}^{3} }{3}  +  -  -  -  + {( - 1)}^{n - 1} C_{n} \dfrac{ {x}^{n} }{n}  \bigg]_{0}^1

\rm \:  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

Hence, From above we concluded that

\rm \: \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}  \\ \rm \:  =  \: 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}

\displaystyle \sf \red{ \rm\implies \:\sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k}  = 1 + \dfrac{1}{2}  + \dfrac{1}{3}  + -  -  -  + \dfrac{1}{n} }

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Given summation is

\rm :\longmapsto\:\displaystyle \sf { \sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k} }

can also be rewritten as

\rm \:  =  \: \displaystyle \sf { \sum \limits^{n} _{k = 1}  \: ^nC_{k} \frac{( - 1) ^{k - 1} }{k} }

can be further open as

\rm \:  =  \: ^nC_{1} - \dfrac{^nC_{2}}{2} + \dfrac{^nC_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: ^nC_{n}}{n}

can also be rewritten as

\rm \:  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

So, it means

\rm \:\displaystyle \sf { \sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k} }  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  - + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

Now, we know that

\rm :\longmapsto\: {(1 - x)}^{n} = C_{0} - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

\rm :\longmapsto\: {(1 - x)}^{n} =1 - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

\rm :\longmapsto\: {(1 - x)}^{n} - 1 =  - C_{1}x + C_{2} {x}^{2} +  -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n}

On dividing by (-1), we get

\rm :\longmapsto\: 1 - {(1 - x)}^{n} = C_{1}x  - C_{2} {x}^{2}  -   -  -  +  {( - 1)}^{n - 1} C_{n}

On dividing both sides by x, we get

\rm :\longmapsto\: \dfrac{1 - {(1 - x)}^{n}}{x}  = C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 2} C_{n} {x}^{n - 1}

Now on integrating both sides between the limits x = 0 and x = 1, we get

\rm :\longmapsto\:\displaystyle\int_0^1\dfrac{1 - {(1 - x)}^{n}}{x}  = \displaystyle\int_0^1C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 2} C_{n} {x}^{n - 1}

Now, Consider LHS of above integral

\rm :\longmapsto\:\displaystyle\int_0^1\dfrac{1 - {(1 - x)}^{n}}{x}

To integrate such integral, we use method of Substitution

So, Substitute

\rm :\longmapsto\:1 - x = y

\rm :\longmapsto\:- dx = dy

\rm :\longmapsto\:dx = -  dy

So, above expression can be rewritten as

\rm \:  =  \:  - \displaystyle\int_{1}^0 \frac{1 - {y}^{n}}{1 - y} dy

\rm \:  =  \: \displaystyle\int_{0}^1 \frac{1 - {y}^{n}}{1 - y} dy

Using Binomial theorem, we have

\rm \:  =  \: \displaystyle\int_{0}^1 (1 + y +  {y}^{2} +  -  -  -  +  {y}^{n - 1}) \: dy

\rm \:  =  \: \bigg[y + \dfrac{ {y}^{2} }{2} + \dfrac{ {y}^{3} }{3}  +  -  -  -  + \dfrac{ {y}^{n} }{n}  \bigg]_{0}^1

\rm \:  =  \: 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}

Now, Consider RHS of above integral

\rm :\longmapsto \:  \displaystyle\int_0^1C_{1}  - C_{2} {x}^{}  -   -  -  +  {( - 1)}^{n - 1} C_{n} {x}^{n - 1}

\rm \:  =  \: \bigg[C_{1}x  - C_{2}\dfrac{ {x}^{2} }{2} + C_{3}\dfrac{ {x}^{3} }{3}  +  -  -  -  + {( - 1)}^{n - 1} C_{n} \dfrac{ {x}^{n} }{n}  \bigg]_{0}^1

\rm \:  =  \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}

Hence, From above we concluded that

\rm \: \: C_{1} - \dfrac{C_{2}}{2} + \dfrac{C_{3}}{3}  +  -  -  -  -  + \dfrac{ {( - 1)}^{n - 1}  \: C_{n}}{n}  \\ \rm \:  =  \: 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}

\displaystyle \sf \red{ \rm\implies \:\sum \limits^{n} _{k = 1} \binom{n}{k} \frac{( - 1) ^{k - 1} }{k}  = 1 + \dfrac{1}{2}  + \dfrac{1}{3}  + -  -  -  + \dfrac{1}{n} }

Similar questions