Math, asked by jeevith1602, 10 months ago

Evaluate the Gauss divergence theorem for F =x2 i+y2 j +z2 k where S is the surface of the cuboid
formed by the planes x=0, x=a, y=0, y=b, z=0 and z=c.

Answers

Answered by shivesh3089s
0

Answer:

, please mark it brainliest

Attachments:
Answered by ushmagaur
2

Answer:

The evaluation of the Gauss divergence is abc(a+b+c).

Step-by-step explanation:

Gauss Divergence theorem:-

The surface\ integral of the normal component of a vector function F over a closed surface S is equal to the volume integral of the divergence of \vec F over the volume V enclosed by the surface S.

Mathematically,

\int \int\limits_S {\vec F\cdot \vec n} \, dS = \int \int \int\limits_V {\nabla \vec F} \, dV . . . . . (1)

Step 1 of 2

Given:-

F=x^2i+y^2j+z^2k, where S : The surface of the cuboid formed by the planes x=0, x=a, y=0, y=b, z=0 and z=c.

We need to evaluate the gauss divergence theorem.

Calculate the value of \nabla \vec F as follows:

\nabla \vec F=\frac{\partial \vec F}{\partial x} +\frac{\partial \vec F}{\partial y}  +\frac{\partial \vec F}{\partial z}

\nabla \vec F=\frac{\partial}{\partial x}(x^2+y^2+z^2) +\frac{\partial}{\partial y}(x^2+y^2+z^2)  +\frac{\partial }{\partial z}(x^2+y^2+z^2)

\nabla \vec F=2x+2y+2z

Step 2 of 2

Using the formula of the Gauss-divergence theorem, we have

\int \int\limits_S {\vec F\cdot \vec n} \, dS = \int \int \int\limits_V {(2x+2y+2z)} \, dV

                  = \int^c_{z=0} \int^b _{y=0} \int^a _{x=0}{(2x+2y+2z)} \, dxdydz

Integrate with respect to x as follows:

\int \int\limits_S {\vec F\cdot \vec n} \, dS= \int^c_{z=0} \int^b _{y=0} {(2\frac{x^2}{2} +2xy+2xz)^a_0} \, dydz

Simplify as follows:

\int \int\limits_S {\vec F\cdot \vec n} \, dS= \int^c_{z=0} \int^b _{y=0} {(x^2 +2xy+2xz)^a_0} \, dydz

                  = \int^c_{z=0} \int^b _{y=0} {(a^2 +2ay+2az-0^2-2(0)y-2(0)z)} \, dydz

                  = \int^c_{z=0} \int^b _{y=0} {(a^2 +2ay+2az)} \, dydz

Now, integrate with respect to y as follows:

\int \int\limits_S {\vec F\cdot \vec n} \, dS= \int^c_{z=0}  {(a^2y +2a\frac{y^2}{2} +2ayz)^b_0} \,dz

                  = \int^c_{z=0}  {(a^2y +ay^2 +2ayz)^b_0} \,dz

                  = \int^c_{z=0}  {(a^2(b) +a(b)^2 +2a(b)z-0)} \,dz

                  = \int^c_{z=0}  {(a^2b +ab^2 +2abz)} \,dz

Lastly, integrate with respect to z as follows:

\int \int\limits_S {\vec F\cdot \vec n} \, dS=  {(a^2bz +ab^2z +2ab\frac{z^2}{2} )}^c_0

                  =  {(a^2bz +ab^2z +abz^2 )^c_0

                  =  a^2bc +ab^2c +abc^2-0

                  =abc(a+b+c)

Final answer: The evaluation of the Gauss divergence is abc(a+b+c).

#SPJ2

Similar questions