Math, asked by AnanyaBaalveer, 3 days ago

Evaluate the given expression:
 \frac{1}{1 +  {a}^{x - y} }  +  \frac{1}{1 +  {a}^{y - x} }

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{1}{1 + {a}^{x - y} } + \dfrac{1}{1 + {a}^{y - x} } \\

We know,

\color{green}\boxed{ \rm{ \: {a}^{m - n}  =  \frac{ {a}^{m} }{ {a}^{n} }  \: }} \\

So, using this identity, the above expression can be rewritten as

\rm \:  =  \: \dfrac{1}{1 + \dfrac{ {a}^{x} }{ {a}^{y} } }  \:  +  \: \dfrac{1}{1 + \dfrac{ {a}^{y} }{ {a}^{x} } }  \\

\rm \:  =  \: \dfrac{1}{\dfrac{{a}^{y} + {a}^{x} }{ {a}^{y} } }  \:  +  \: \dfrac{1}{ \dfrac{{a}^{x} + {a}^{y} }{ {a}^{x} } }  \\

\rm \:  =  \: \dfrac{{a}^{y}}{{a}^{y} + {a}^{x}}  + \dfrac{{a}^{x}}{{a}^{x} + {a}^{y}}  \\

can be rewritten as

\rm \:  =  \: \dfrac{{a}^{y}}{{a}^{y} + {a}^{x}}  + \dfrac{{a}^{x}}{{a}^{y} + {a}^{x}}  \\

\rm \:  =  \: \dfrac{{a}^{y} + {a}^{x}}{{a}^{y} + {a}^{x}}   \\

\rm \:  =  \: 1 \\

Hence,

\rm\implies \:\boxed{ \rm{ \: \dfrac{1}{1 + {a}^{x - y} } + \dfrac{1}{1 + {a}^{y - x} } \:  =  \: 1 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions