Math, asked by jividhabadole, 1 year ago

Evaluate the given limit plz solve this.​

Attachments:

Answers

Answered by keya15
0

Answer:

I think x⁴+128÷8=x+16.

step by step explanation:- x+128÷x³+8

= x-³ (x÷x³=x-³)

=x+128÷8

=x+16.

hope it helps....

follow me....

&

mark me as brainliest......plzzzzz

Answered by Anonymous
3

To Evaluate :-

  • \sf\lim\limits_{x\to(-2)}\left[ \dfrac{x^7+128}{x^3+8}\right]

‎ ‎ ‎

Solution :-

  • \sf\lim\limits_{x\to(-2)}\left[ \dfrac{x^7+128}{x^3+8}\right]

By directly substituting value of x = -2, we get :

\sf\to\left[ \dfrac{( - 2)^7+128}{( - 2)^3+8}\right] = \left[ \dfrac{ - 128 + 128}{ - 8 + 8}  \right]  =  \dfrac{0}{0}

This is an indeterminate quantity, hence substitution method fails.

Now let's apply L'Hopital rule according to which,

 \sf\mapsto \red{\lim\limits_{x\to a }\dfrac{f(x)}{g(x)} = \lim\limits_{x\to a } \dfrac{f'(x)}{g('x)}}

So,

\sf\implies\lim\limits_{x\to(-2)}\left[ \dfrac{x^7+128}{x^3+8}\right]

\sf\implies\lim\limits_{x\to(-2)}\left[ \dfrac{\frac{d}{dx}(x^7+128)}{\frac{d}{dx}(x^3+8)}\right]

\sf \implies\lim\limits_{x\to(-2)}\left[ \dfrac{ \frac{d}{dx}(x^7) +  \frac{d}{dx}(128)}{\frac{d}{dx}(x^3)+ \frac{d}{dx} (8)}\right]

\sf \implies\lim\limits_{x\to(-2)}\left[ \dfrac{ 7x^6+ 0}{3x^2+ 0}\right]

\sf \implies\lim\limits_{x\to(-2)}\left[ \dfrac{ 7x^6}{3x^2}\right]

\sf \implies\lim\limits_{x\to(-2)}\left[ \dfrac{ 7x^4}{3}\right]

Now by substituting x = -2 , we get :

\sf \leadsto\left[ \dfrac{ 7( - 2)^4}{3}\right]

\sf \leadsto\left[ \dfrac{ 7 \times 16}{3}\right]

\sf \leadsto\left[ \dfrac{ 112}{3}\right]

 \sf \: {Hence, \:  \underline{ \underline{\lim\limits_{x\to(-2)}\left[ \dfrac{x^7+128}{x^3+8}\right] =  \dfrac{112}{3} }}}

Similar questions