Math, asked by Itzheartcracer, 2 months ago

Evaluate the given limit
\sf \lim_{x \to 0} (\cos\sec x - \cot x)
No spam

Answers

Answered by Anonymous
65

Correct Question:-

Evaluate the given limit :  \sf\lim_{x \to 0} ( cosec \ \ x - cot \ \ x )

Given:-

Evaluate the given limit :  \sf\lim_{x \to 0} ( cosec \ \ x - cot \ \ x )

To Find:-

Evaluate the limit.

Note:-

Here, the inverse of cosec x is sin x ; When cot x is expand it becomes  \dfrac{cos \ \ x}{sin \ \ x} .

Formula of : 1 - cos x = 2 sin²  \dfrac{x}{2} , sin 2 x =  2 \ \ sin \dfrac{x}{2} × cos \dfrac{x}{2} .

●》 \dfrac{sin \frac{x}{2}}{cos \frac{x}{2}} \ \ changes \ \ to \implies tan \dfrac{x}{2} .

Solution:-

 \huge\red{\sf\lim_{x \to 0} ( cosec \ \ x - cot \ \ x )}

 \huge\red{ \ \ \ \ Their \ \ Evaluation = ?}

According to note first point~

▪︎ \sf\lim_{x \to 0} ( cosec \ \ x - cot \ \ x )

▪︎ \sf\lim_{x \to 0} ( \dfrac{1}{sin \ \ x} - \dfrac{cos \ \ x}{sin \ \ x} )

▪︎ \sf\lim_{x \to 0} ( \dfrac{1 - cos \ \ x}{sin \ \ x} )

According to note second point~

▪︎ \sf\lim_{x \to 0} ( \dfrac{2 sin² \frac{x}{2}}{2 sin \frac{x}{2} × cos \frac{x}{2}} )

▪︎ \sf\lim_{x \to 0} ( \dfrac{2 sin \frac{x}{2} × sin \frac{x}{2}}{2 sin \frac{x}{2} × cos \frac{x}{2}} )

After dividing 2 by 2,  sin \dfrac{x}{2} \ \ by \ \ sin \dfrac{x}{2} ~

▪︎ \sf\lim_{x \to 0} ( \dfrac{sin \frac{x}{2}}{cos \frac{x}{2}} )

According to note third point~

▪︎ \sf\lim_{x \to 0} ( tan \dfrac{x}{2} )

Putting the limit value~

▪︎ ( tan \dfrac{0}{2} )

After dividing 0 by 2~

▪︎ ( tan 0 )

As tan 0 will be 0~

▪︎ 0

 \huge\pink{Their \ \ Evaluation = 0}

Answer:-

Hence, Evaluation of :  \sf\lim_{x \to 0} ( cosec \ \ x - cot \ \ x ) = 0 .

:)

Answered by TheGodWishperer
16

\huge\mathtt\pink{A}\mathtt\red{N}\mathtt\blue{S}\mathtt\green{W}\mathtt\purple{E}\mathtt\green{R}

Solution:-

 \mathtt \red{ lim_{x \rightarrow0 }(cosec \: x \:  - cot \: x)}

If we put the value of X than cosec x will give undefined

Hence changing state of look:-

 \divideontimes \:  \:  \: \mathtt \blue{ lim_{x \rightarrow0 }( \frac{1}{sin \: x}  \:  -  \frac{cos \: x}{sin \: x} )}

 \divideontimes \:  \:  \:  \: \mathtt \green{ lim_{x \rightarrow0 }( \frac{1 - cos \: x}{sin \: x})} = \mathtt \orange { lim_{x \rightarrow0 }( \frac{2 { \sin}^{2}  \frac{x}{2} }{2sin   \frac{x}{2} \cos \frac{x}{2}   })}

\divideontimes \:  \:  \:  \:  \: \ \: \mathtt \pink{ lim_{x \rightarrow0 }( \frac{ \sin \frac{x}{2}  }{ \cos \frac{x}{2}  })} =

 \divideontimes \:  \:  \:  \:  \: \mathtt \green{ lim_{x \rightarrow0 }( \tan \frac{x}{2} ) }

 \divideontimes \:  \:  \:  \: \mathtt \red{if \: x \: tending \: to \: zero \: than \:  \rightarrow}

 \divideontimes \:  \:  \:  \:  \: \mathtt \blue{  \boxed{ tan \frac{x}{2}  = 0} }

Similar questions