Math, asked by Anonymous, 1 month ago

Evaluate the given limits :-
 \rm\lim\limits_{x\to0}\dfrac{sin^2(\pi\cos^4x)}{x^4}

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf  \frac{ {sin}^{2}(\pi \:  {cos}^{4}x)}{ {x}^{4} }

If we substitute directly x = 0, we get

\rm \:  =  \: \sf  \dfrac{ {sin}^{2}(\pi \:  {cos}^{4}0)}{ {0}^{4} }

\rm \:  =  \:\sf  \dfrac{ {sin}^{2}(\pi \:  \times 1)}{ 0 }

\rm \:  =  \:\sf  \dfrac{ {sin}^{2}\pi }{ 0 }

\rm \:  =  \:\sf  \dfrac{ 0 }{ 0 }

which is indeterminant form.

So, Consider Again

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf  \frac{ {sin}^{2}(\pi \:  {cos}^{4}x)}{ {x}^{4} }

Using L - Hospital Rule, we have

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf  \frac{ \dfrac{d}{dx}{sin}^{2}(\pi \:  {cos}^{4}x)}{ \dfrac{d}{dx}{x}^{4} }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}sinx = cosx \: }}

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \dfrac{2sin(\pi {cos}^{4}x)\dfrac{d}{dx}sin(\pi \:  {cos}^{4}x) }{4 {x}^{3} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \dfrac{2sin(\pi {cos}^{4}x)cos(\pi {cos}^{4}x) \dfrac{d}{dx}(\pi \:  {cos}^{4}x) }{4 {x}^{3} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \dfrac{2sin(\pi {cos}^{4}x)cos(\pi {cos}^{4}x) (4\pi{cos}^{3}x) ( - sinx)}{4 {x}^{3} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \dfrac{2sin(\pi {cos}^{4}x)cos(\pi {cos}^{4}x) (\pi{cos}^{3}x) ( - sinx)}{{x}^{3} }

\rm \:  =   - \: 2\pi \: cos\pi \: \displaystyle\lim_{x \to 0}\sf  \frac{sin(\pi {cos}^{4} x)}{ {x}^{2} } \times \displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x} = 1 \: }}

So, using this, we get

\rm \:  =   - \: 2\pi \: ( - 1) \: \displaystyle\lim_{x \to 0}\sf  \frac{sin(\pi {cos}^{4} x)}{ {x}^{2} } \times 1

\rm \:  =  \: 2\pi  \: \displaystyle\lim_{x \to 0}\sf  \frac{sin(\pi {cos}^{4} x)}{ {x}^{2} }

Using L - Hospital Rule, we get

\rm \:  =  \: 2\pi  \: \displaystyle\lim_{x \to 0}\sf  \frac{\dfrac{d}{dx}sin(\pi {cos}^{4} x)}{ \dfrac{d}{dx}{x}^{2} }

\rm \:  =  \: 2\pi  \: \displaystyle\lim_{x \to 0}\sf  \frac{cos(\pi {cos}^{4}x) \dfrac{d}{dx}\pi {cos}^{4} x}{2x }

\rm \:  =  \: \pi  \: \displaystyle\lim_{x \to 0}\sf  \frac{cos(\pi {cos}^{4}x) \pi (4{cos}^{3} x)( - sinx)}{x }

\rm \:  =  \:  -  \: 4 {\pi}^{2} cos(\pi) \: \displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x }

\rm \:  =  \:  -  \: 4 {\pi}^{2} \times  ( - 1) \:  \times 1

\rm \:  =  \: \: 4 {\pi}^{2}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf  \frac{ {sin}^{2}(\pi \:  {cos}^{4}x)}{ {x}^{4} }  =  {4\pi}^{2}  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Answered by shadowsabers03
8

Given to evaluate the limit,

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\sin^2(\pi\cos^4x)}{x^4}$}

On putting x=0 directly then we get indeterminate form.

We know that,

  • \small\text{$\displaystyle\sin(\pi-x)=\sin x$}

Thus we have,

  • \small\text{$\displaystyle\sin(\pi-\pi\cos^4x)=\sin(\pi\cos^4x)$}

Then,

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\sin^2(\pi-\pi\cos^4x)}{x^4}$}

Dividing numerator and denominator by \small\text{$(\pi-\pi\cos^4x)^2,$}

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\left(\dfrac{\sin^2(\pi-\pi\cos^4x)}{(\pi-\pi\cos^4x)^2}\right)}{\left(\dfrac{x^4}{(\pi-\pi\cos^4x)^2}\right)}$}

Since \small\text{$\dfrac{\left(\dfrac{a}{b}\right)}{\left(\dfrac{c}{d}\right)}=\dfrac{a}{b}\cdot\dfrac{d}{c},$}

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\sin^2(\pi-\pi\cos^4x)}{(\pi-\pi\cos^4x)^2}\cdot\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\left(\dfrac{\sin(\pi-\pi\cos^4x)}{\pi-\pi\cos^4x}\right)^2\cdot\lim_{x\to0}\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

\small\text{$\displaystyle\longrightarrow L=\left(\lim_{x\to0}\dfrac{\sin(\pi-\pi\cos^4x)}{\pi-\pi\cos^4x}\right)^2\lim_{x\to0}\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

As \small\text{$\pi-\pi\cos^4x\to0$} when \small\text{$x\to0,$}

\small\text{$\displaystyle\longrightarrow L=\left(\lim_{\pi-\pi\cos^4x\to0}\dfrac{\sin(\pi-\pi\cos^4x)}{\pi-\pi\cos^4x}\right)^2\lim_{x\to0}\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

Taking \small\text{$t=\pi-\pi\cos^4x,$}

\small\text{$\displaystyle\longrightarrow L=\left(\lim_{t\to0}\dfrac{\sin t}{t}\right)^2\lim_{x\to0}\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

We know that,

  • \small\text{$\displaystyle\lim_{t\to0}\dfrac{\sin t}{t}=1$}

Then,

\small\text{$\displaystyle\longrightarrow L=1^2\cdot\lim_{x\to0}\dfrac{(\pi-\pi\cos^4x)^2}{x^4}$}

\small\text{$\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\pi^2(1-\cos^4x)^2}{x^4}$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\lim_{x\to0}\left(\dfrac{1-\cos^4x}{x^2}\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(\lim_{x\to0}\dfrac{1-\cos^4x}{x^2}\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(\lim_{x\to0}\dfrac{(1-\cos^2x)(1+\cos^2x)}{x^2}\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(\lim_{x\to0}\dfrac{\sin^2x(1+\cos^2x)}{x^2}\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(\lim_{x\to0}\dfrac{\sin^2x}{x^2}\cdot\lim_{x\to0}(1+\cos^2x)\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(\left(\lim_{x\to0}\dfrac{\sin x}{x}\right)^2\cdot\lim_{x\to0}(1+\cos^2x)\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(1^2(1+\cos^20)\right)^2$}

\small\text{$\displaystyle\longrightarrow L=\pi^2\left(1^2(1+1^2)\right)^2$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{L=4\pi^2}}$}

Similar questions