Math, asked by taddiprerana0, 1 month ago

evaluate the given question​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\log_{c^2}(a^b)\cdot\,\log_{a^2}(b^c)\cdot\,\log_{b^4}(c^a)}

\tt{=b\log_{c^2}(a)\cdot\,c\log_{a^2}(b)\cdot\,a\log_{b^4}(c)}

\tt{=\dfrac{b}{2}\log_{c}(a)\cdot\,\dfrac{c}{2}\log_{a}(b)\cdot\,\dfrac{a}{4}\log_{b}(c)}

\tt{=\dfrac{b}{2}\dfrac{\ln(a)}{\ln(c)}\cdot\,\dfrac{c}{2}\dfrac{\ln(b)}{\ln(a)}\cdot\,\dfrac{a}{4}\dfrac{\ln(c)}{\ln(b)}}

\tt{=\dfrac{b}{2}\cdot\,\dfrac{c}{2}\cdot\,\dfrac{a}{4}}

\tt{=\dfrac{abc}{16}}

Answered by mathdude500
5

Given Question : -

Evaluate :-

\rm :\longmapsto\:{\log_{c^2}(a^b)\cdot\,\log_{a^2}(b^c)\cdot\,\log_{b^4}(c^a)}

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:{\log_{c^2}(a^b)\cdot\,\log_{a^2}(b^c)\cdot\,\log_{b^4}(c^a)}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  log_{ {x}^{y} }( {z}^{w} )  =  \frac{w}{y} log_{x}(z) \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{b}{2}  log_{c}(a) \dfrac{c}{2}  log_{a}(b) \dfrac{a}{4}  log_{b}(c)

\rm \:  =  \:\dfrac{abc}{16}  log_{c}(a)  \times  log_{a}(b) \times   log_{b}(c)

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  log_{x}(y) =  \frac{logy}{logx} \: }}

So, using this, we get

\rm \:  =  \:\dfrac{abc}{16}  \times \dfrac{loga}{logc}  \times \dfrac{logb}{loga}  \times \dfrac{logc}{logb}

\rm \:  =  \:\dfrac{abc}{16}

More to know :-

\boxed{ \tt{ \:  log_{x}(x) = 1 \: }}

\boxed{ \tt{ \:  log_{x}( {x}^{y} ) =y \: }}

\boxed{ \tt{ \:  log_{ {x}^{z} }( {x}^{y} ) = \frac{y}{z}  \: }}

\boxed{ \tt{ \:  {e}^{logx} \:  =  \: x \: }}

\boxed{ \tt{ \:  {e}^{y \: logx} \:  =  \:  {x}^{y}  \: }}

\boxed{ \tt{ \:  {a}^{ log_{a}(x) } = x \: }}

\boxed{ \tt{ \:  {a}^{ ylog_{a}(x) } =  {x}^{y}  \: }}

Similar questions