Math, asked by dattaarcisman003, 6 months ago

Evaluate the integral int(cos²x dx)

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 i = \int \cos^{2} (x)  dx \\

 i =  \int \cos(x) . \cos(x) dx \\

 =  > i =  \cos(x) . \int \cos(x) dx -  \int( \frac{d}{dx} ( \cos(x) ). \int \cos(x) dx)dx \\

 =  > i =   \cos(x) \sin(x)  -  \int -  \sin(x) . \sin(x) dx \\

  =  >i =  \sin(x)   \cos(x)  +  \int \sin^{2} (x) dx \\

 =  > i =  \sin(x)  \cos(x)  +  \int(1 -  \cos^{2} (x) )dx \\

 =  > i =  \sin(x)  \cos(x)  +  \int1 \times dx -  \int \cos^{2} (x) dx \\

 =  > i =  \sin(x)  \cos(x)  + x - i

 =  > 2i =  \sin(x)  \cos(x)  + x

 =  > i =  \frac{ \sin(x) \cos(x )  }{2}  +  \frac{x}{2}  \\

Similar questions