Math, asked by Anonymous, 4 months ago

Evaluate the integral
integration [(sin2x
+ Cos2x)dx] between the limits x= PI/4
and x= PI/3. Answer should be correct to one decimal​

Answers

Answered by mathdude500
6

\large\underline{\bold{Solution-}}

\rm :\longmapsto\:Let \: I \:  =  \: \int_ \frac{\pi}{4} ^ \frac{\pi}{3} \:  (sin2x \:  +  \: cos2x) \: dx

We know that

 \boxed{ \sf{ \int \: sinx \: dx \:  =  \: -  \:  cosx \:  + \:  c}}

and

 \boxed{ \sf{ \int \: cosx \: dx \:  =  \: sinx \:  +  \: c}}

So,

\rm :\longmapsto\:I \: \rm \:   =  \bigg(  -  \: \dfrac{cos2x}{2}  + \dfrac{sin2x}{2} \bigg)_\frac{\pi}{4} ^ \frac{\pi}{3}

\rm :\longmapsto\:I \:  =\dfrac{1}{2} \bigg(  - cos\dfrac{2\pi}{3} + sin\dfrac{2\pi}{3} \bigg)  - \dfrac{1}{2} \bigg(  - cos\dfrac{\pi}{2} + sin\dfrac{\pi}{2}\bigg)

\rm :\longmapsto\:I \:  =\dfrac{1}{2} \bigg(\dfrac{1}{2}  + \dfrac{ \sqrt{3} }{2}  \bigg)  - \dfrac{1}{2} \bigg( 0 + 1\bigg)

\rm :\longmapsto\:I \:  =\dfrac{1}{2} \bigg( \dfrac{1}{2}  + \dfrac{ \sqrt{3} }{2}  - 1\bigg)

\rm :\longmapsto\:I \:  =\dfrac{1}{2} \bigg( 0.5 + \dfrac{1.732}{2}  - 1\bigg)

\rm :\longmapsto\:I \:  =\dfrac{1}{2} ( - 0.5 + 0.866)

\rm :\longmapsto\:I \:  =\dfrac{1}{2}   \times 0.366 = 0.183

\bf\implies \:I \:  =0.2 \: (approx)

Additional Information :-

Properties of definite integrals.

\sf (1). \:  \:  \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}

 \sf (2). \:  \:  \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} </p><p>

\sf (3). \: \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a &lt; c &lt; b

\sf (4). \:  \:  \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)}

\sf (5). \:  \: \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}

Similar questions