Math, asked by mujahidkhanfata66, 3 months ago

Evaluate the integral of dx/(x + 2)from -6 to -10.​

Answers

Answered by amansharma264
9

EXPLANATION.

\sf \implies\int\limits_{-6}^{-10}\dfrac{dx}{(x + 2)}.

By using the substitutions method, we get.

Substitute (x + 2) = t.

Differentiate w.r.t x, we get.

⇒ dx = dt.

Put the values in equation, we get.

\sf \implies \int\limits_{-6}^{-10}\dfrac{dt}{t}

As we know that,

⇒ ∫dt/t = ln | t | + c.

\sf \implies \int\limits_{-6}^{-10} ln | t| + c.

Put the value of t in equation, we get.

\sf \implies [ln |x + 2| ]\limits_{-6}^{-10}

⇒ [ln | -10 + 2|] -[ ln | - 6 + 2 |].

⇒ [ ln(-8) ] - [ ln(-4) ].

⇒ ln(-8) + ln(4).

                                                                                       

MORE INFORMATION.

Definition [NEWTON-LEIBNITZ FORM].

Let f'' is the function of x defined on [a, b] and d[f(x)]/dx = Ф(x) and a and b, are two values independent of variable x, then for all values of x  in domain of f'' then,

\sf\implies\int\limits_{a}^{b}\phi(x)dx = [f(x)]\limits_{a}^{b} = f(b) - f(a).


Hridya2009: hello
Hridya2009: what is the problem with you dude?
Answered by mathdude500
3

{ \boxed {\bf{Given \: Question}}}

Evaluate the integral of dx/(x + 2) from -6 to -10.

___________________________________________

{ \boxed {\bf{Formula \:  used :- }}}

\bf\int\ \dfrac{1}{x}dx = logx \:  + c

\bf \: log(x)  -  log(y)  =  log( \dfrac{x}{y} )

\ \blue{ \large \bf \: Solution :- } 

\bf\int\limits_{ - 6}^{ - 10} \dfrac{1}{x + 2}dx

\bf\implies \:[log |x + 2|  ]_{-6}^{-10}

\bf\implies \: log | - 10 + 2|  -  log | - 6 + 2|

\bf\implies \: log | -8|  -  log | - 4|

\bf\implies \: log | 8|  -  log | 4|

\bf\implies \:log\dfrac{8}{4}  = log2

{ \boxed {\bf\implies \:{\bf\int\limits_{ - 6}^{ - 10} \dfrac{1}{x + 2}dx = log2}}}

___________________________________________

Similar questions