Evaluate the integral of (x^2 + 5)e^(-x) dx from 0 to 1.
Answers
Answered by
0
Explanation:
Let, I=∫(x2+1)e−xdx.
Using the following Rule of Integration by Parts(IBP) :
IBP : ∫uv'dx=uv−∫vu'dx.
We take, u=x2+1,and,v'=e−x.
∴u'=2x,and,v=∫e−xdx=e−x−1=−e−x.
∴I=−(x2+1)e−x−∫(−e−x⋅2x)dx,
⇒I=−(x2+1)e−x+2I1, where, I1=∫xe−xdx.
We once again use IBP for I1; this time, we choose,
u=x,and,v'=e−x∴u'=1,and,v=−e−x.
∴I1=−xe−x−∫(−e−x⋅1)dx,
:I1=−xe−x−e−x.
Utilising I1 in I, we get,
I=−(x2+1)e−x+2{−xe−x−e−x},
⇒I=−(x2+2x+3)e−x+C.
∴∫10(x2+1)e−xdx=−[(x2+2x+3)e−x]10,
=−[(1+2+3)e−1−(0+0+3)e−0].
⇒∫10(x2+1)e−xdx=−(6e−3)=3e(e−2)
Let, I=∫(x2+1)e−xdx.
Using the following Rule of Integration by Parts(IBP) :
IBP : ∫uv'dx=uv−∫vu'dx.
We take, u=x2+1,and,v'=e−x.
∴u'=2x,and,v=∫e−xdx=e−x−1=−e−x.
∴I=−(x2+1)e−x−∫(−e−x⋅2x)dx,
⇒I=−(x2+1)e−x+2I1, where, I1=∫xe−xdx.
We once again use IBP for I1; this time, we choose,
u=x,and,v'=e−x∴u'=1,and,v=−e−x.
∴I1=−xe−x−∫(−e−x⋅1)dx,
:I1=−xe−x−e−x.
Utilising I1 in I, we get,
I=−(x2+1)e−x+2{−xe−x−e−x},
⇒I=−(x2+2x+3)e−x+C.
∴∫10(x2+1)e−xdx=−[(x2+2x+3)e−x]10,
=−[(1+2+3)e−1−(0+0+3)e−0].
⇒∫10(x2+1)e−xdx=−(6e−3)=3e(e−2)
Answered by
0
3 f(x) dx −4 where f(x) = 2 if −4 ≤ x ≤ 0 5 − x2 if 0 < 55
≈≈≈≈≈≈≈≈
ŦΉΛПKŞ
≈≈≈≈≈≈≈≈
Similar questions