Math, asked by sheoranprateek, 1 year ago

evaluate the integral tan inverse √X dx

Answers

Answered by BrainlyWarrior
50
Hey there!

Solution :


 Let \:I = \int tan^{-1} \sqrt{x} dx


Let this be the equation ( a )


Put \sqrt{x} = t


x = t^{2}


Now differentiate both sides wrt x ;


dx = 2t .dt


Substituting the value of t and dx in eq. ( a )


 I = \int tan^{-1} t . 2t .dt\\ \\ I = 2 \int t tan^{-1} .dt


Now Integration by parts ;


 I = 2 ( tan^{-1} \int ( t .dt ) - \int ( \dfrac{d ( tan^{-1} t )}{dx} . \int ( t . dt ) ) dt\\ \\ I = 2 ( tan^{-1} t . \dfrac{t^{2}}{2} - \int ( \dfrac{1}{1 + t^{2}} . \dfrac{t^{2}}{2} ) dt\\ \\ I = 2 ( \dfrac{t^{2}}{2} tan^{-1} t - \dfrac{2}{2} \int \dfrac{t^{2}}{ 1 + t^{2}}. dt\\ \\ I = t^{2} tan^{-1} t - 1 \int \dfrac{( t^{2} + 1 ) - 1}{1 + t^{2}} .dt\\ \\ I = t^{2} tan^{-1} t - \int ( dt ) - \int ( \dfrac{1}{1 + t^{2}}. dt ) \\ \\ I = t^{2} tan^{-1} t - (  t - tan^{-1} t ) \\ \\I = t^{2} tan^{-1} t - t + tan^{-1} t + c

Now substitute the value of t ;

I = x tan^{-1} \sqrt{x} - \sqrt{x} + tan^{-1} \sqrt{x} + c \\ \\ I = tan^{-1} \sqrt{x} ( x + 1 ) - \sqrt{x} + c



#BeBrainly.

darshita93: what problem u have from me... you have deleted 2 questions of mine why can u explain mee..
Similar questions