Math, asked by Anonymous, 1 month ago

Evaluate the Integral :-

 { \bigstar { \underline { \boxed { \displaystyle { \sf { \int { \dfrac{1}{x² - 1} dx } } } } } } { \bigstar} }

Answers

Answered by JoeNotExotic
25

Step-by-step explanation:

thank \: you

Attachments:
Answered by SparklingBoy
54

To Find :-

Value of \displaystyle { \rm { \int { \dfrac{1}{x^2 - 1} dx }}}

Solution :-

Method 1 :

As

 \rm \frac{1}{ {x}^{2}  - 1}  \\

 = \rm  \frac{1}{ {x}^{2}  - 1 {}^{2} }  \\

 =  \rm  \frac{1}{(x + 1)(x - 1)} \\

 =  \rm \frac{1}{2}  \bigg( \frac{1}{x - 1}  -  \frac{1}{x + 1}  \bigg) \\

Now,

 \therefore\displaystyle { \rm { \int { \dfrac{1}{x^2 - 1} dx }}}  \\

 =   \displaystyle {  \rm { \int  \frac{1}{2} \bigg(  { \dfrac{1}{x   - 1}  -  \frac{1}{x + 1}  \bigg)dx }}}  \\

=    \frac{1}{2} \displaystyle {  \rm { \int  \bigg(  { \dfrac{1}{x   - 1}   -   \frac{1}{x + 1}  \bigg)dx }}}  \\

=    \frac{1}{2}  \bigg[\displaystyle {  \rm { \int \bigg(  { \dfrac{1}{x   - 1} \bigg)dx }}}   -  { \int \rm\bigg(  {  \frac{1}{x + 1}  \bigg)dx }}  \bigg] \\  \\

 =  \rm \frac{1}{2}  \bigg(  \log  |x - 1|  -  \log |x + 1| \bigg)  + C \\

\purple{  \rm=  \frac{1}{2}  \bigg( \log   \bigg| \frac{x - 1}{x + 1}  \bigg|   \bigg)+C }\\

Method 2 :-

   \rm\therefore\int  \frac{1}{ {x}^{2} - 1 }dx \\

 \rm =  \int \frac{1}{ {x}^{2}  -  {1}^{2} }  dx\\

We Have Formula that

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{  \int \frac{1}{ {x}^{2} -  {a}^{2}  }  \: dx =   \frac{1}{2a} log  \bigg| \frac{x - a}{x + a}  \bigg|  +C  }}}

 \rm Here  \:  \: \:  a = 1

Therefore,

 \rm \int \frac{1}{ {x}^{2}  -  {1}^{2} }  dx \\

\purple{  \rm=  \frac{1}{2}  \bigg( \log   \bigg| \frac{x - 1}{x + 1}  \bigg|   \bigg)+C }\\


rsagnik437: Awesomee ! :)
Similar questions