Math, asked by diliptalpada66, 4 days ago

Evaluate the integral:
 \color{darkviolet}\boxed{ \tt \ \displaystyle   \gg\gg\tt∫cos x \sqrt{ \left(9 - sin {}^{2}  x \right)} dx  \ll\ll}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by XxitzZBrainlyStarxX
8

Question:-

Evaluate the integral:

 \sf \large \int cos x \sqrt{ \left(9 - sin {}^{2} x \right)} dx .

Given:-

 \sf \large \int cos x \sqrt{ \left(9 - sin {}^{2} x \right)} dx .

To Find:-

  • To Evaluate the Given integral.

Solution:-

 \sf \large I =  \sf \large \int cos x \sqrt{ \left(9 - sin {}^{2} x \right)} dx .

Put, sin x = t, then cos x dx = dt.

 \sf \large \therefore I =  \int \sqrt{(9 - t {}^{2}) } dt

We have that,

 \sf \large \int \sqrt{a {}^{2} - x {}^{2}  )} dx =  \frac{1}{2}  \bigg \{x \sqrt{(a {}^{2}  - x {}^{2}) }  + a {}^{2}  \: sin {}^{ - 1}  \frac{x}{a}  \bigg \}.

 \sf \large I =  \int \sqrt{(9 - t) {}^{2} } dt =  \frac{1}{2}  \bigg \{t \sqrt{(9  - t {}^{2} )}   + 9 \: sin {}^{ - 1}   \: \frac{t}{3}  \bigg \} + c.

 \sf \large =  \frac{1}{2 }  \bigg \{sin \: x \sqrt{(9 - sin {}^{2} x)}  + 9 \: sin {}^{ - 1}  \bigg( \frac{sin \: x}{3}  \bigg) \bigg \} + c.

Answer:-

 \sf \large \color{violet} \sf \large \int cos x \sqrt{ \left(9 - sin {}^{2} x \right)} dx   \sf \large =  \frac{1}{2 }  \bigg \{sin \: x \sqrt{(9 - sin {}^{2} x)}  + 9 \: sin {}^{ - 1}  \bigg( \frac{sin \: x}{3}  \bigg) \bigg \} + c.

Hope you have satisfied.

Similar questions