Math, asked by diliptalpada66, 9 days ago

Evaluate The Integral:-
 \colorbox{pink}{ \boxed{ \red{  \color{cyan} \bigstar  \color{red}\displaystyle \tt \int {x}^{2}   \sqrt{8 -  {x}^{6}  }  \:  \:  \:  \color{darkorange} \bigstar}}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by kakalisarkarraju2011
1

Evaluate The Integral:-

 \colorbox{pink}{ \boxed{ \red{ \color{cyan} \bigstar \color{red}\displaystyle \tt \int {x}^{2} \sqrt{8 - {x}^{6} } \: \: \: \color{darkorange} \bigstar}}}

Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators

★ Brainly stars and teacher

★ Others best users

Answered by XxitzZBrainlyStarxX
12

Question:-

Evaluate the integral:

\sf \large \int {x}^{2} \sqrt{8 - {x}^{6} }.

Given:-

\sf \large \int {x}^{2} \sqrt{8 - {x}^{6} }.

To Find:-

  • Need to Evaluate the Given integral.

Solution:-

\sf \large \int {x}^{2} \sqrt{8 - {x}^{6} }.

\sf \large Substitute \: \: u = x {}^{3}  \longmapsto \frac{du}{dx}  = 3x {}^{2} \\  \\  \sf \large dx =  \frac{1}{3x {}^{2} }  du, \:  \\  \\  \sf \large use: \: x {}^{6}  = u {}^{2}  \\  \\  \sf \large =  \frac{1}{3}  \int \sqrt{8 - u {}^{2} }  \: du

Now Solving:

 \sf \large \int \sqrt{8 - u {}^{2} }  \: du

Perform Trigonometric substitution:

\sf \large Substitute  \:  \: u = 2 {}^{ \frac{3}{2} }  \: sin(v) \longmapsto \: v = arcsin \bigg( \frac{u}{2 {}^{ \frac{3}{2} } } \bigg) \\  \\  \sf \large du = 2 {}^{ \frac{3}{2} }   \: cos(v) \: dv \\  \\  \sf \large  =  \int2 {}^{ \frac{3}{2} }  \: cos(v) \sqrt{8 - 8 \: sin {}^{2}(v) }  \: dv \\  \\  \sf \large Simplify \: using \: 8 - 8 \: sin {}^{2} (v) = 8 \: cos {}^{2} (v) :  \\  \\  \sf \large = 8 \int cos {}^{2} (v)dv

Now Solving:

\sf \large \int  cos {}^{2} (v)dv

Apply reduction formula:

 \sf \large \int cos {}^{n}(v)dv =  \frac{n - 1}{n}   \int cos {}^{n - 2} (v)dv +  \frac{cos {}^{n - 1} (v)sin(v)}{n}  \\  \\  \sf \large with \: n = 2 :  \\  \\  \sf \large = \frac{cos(v)sin(v)}{2}  +  \frac{1}{2 }  \int 1 \: dv \\  \\  \sf \large or \: choose \: an \: alternative:

Apply product - to - sum formulas

Now Solving:

\sf \large \int \: 1 \: dv \\  \\  \sf \large Apply \: constant \: value:  \\  \\  \sf \large = v

Plug in solved integrals:

 \sf \large  \frac{cos(v)sin(v)}{2}  +  \frac{1}{2}  \int \: 1 \: dv \\  \\  \sf \large =  \frac{cos(v)sin(v)}{2}  +  \frac{v}{2}

Plug in solved integrals:

\sf \large 8 \int \: cos {}^{2} (v)dv \\  \\  \sf \large = 4 \: cos(v)sin(v) + 4v

 \sf \large Undo \:  Substitution \:  \: v = arcsin \bigg( \frac{u}{2 {}^{ \frac{3}{2} } }  \bigg),  \: use: \\  \\  \sf \large sin \bigg(arcsin \bigg( \frac{u}{2 {}^{ \frac{3}{2} } }  \bigg) \bigg) =  \frac{u}{2 {}^{ \frac{3}{2} } }  \\  \\  \sf \large cos \bigg(arcsin \bigg( \frac{u}{2 {}^{ \frac{3}{2} } }  \bigg) \bigg) =  \sqrt{1 -  \frac{u {}^{2} }{8} }  \\  \\  \sf \large = 4 \: arcsin \bigg( \frac{u}{2 {}^{ \frac{3}{2} } }  \bigg) +  \sqrt{2} u \sqrt{1 -  \frac{u {}^{2} }{8} }

Plug in solved integrals:

 \sf \large \frac{1}{3}  \int \sqrt{8 - u {}^{2} }  \: du \\  \\  \sf \large =  \frac{4 \: arcsin \bigg(  \frac{u}{2 {}^{ \frac{3}{2} } } \bigg)  }{3}  +  \frac{ \sqrt{2}u \sqrt{1 -  \frac{u {}^{2} }{8} }  }{3}  \\  \\  \sf \large Undo \: Substitution  \: \: u = x {}^{3}  : \\  \\  \sf \large =  \frac{4 \: arcsin \bigg( \frac{x {}^{3} }{2 {}^{ \frac{3}{2} } }  \bigg)}{3}  +  \frac{ \sqrt{2}x  {}^{3} \sqrt{1 -  \frac{x {}^{6} }{8} }  }{3}

The problem is solved:

\sf \large \int x {}^{2}  \sqrt{8 - x {}^{6} }  \: dx \\  \\  \sf \large =  \frac{4 \: arcsin \bigg( \frac{x {}^{3} }{2 {}^{ \frac{3}{2} }  } \bigg) }{3}  +  \frac{ \sqrt{2}x {}^{3}  \sqrt{1 -  \frac{x {}^{6} }{8} }    }{ 3}  + c

\sf \large Simplify: \:  \:  =  \frac{8 \: arcsin \bigg( \frac{x {}^{3} }{2 {}^{ \frac{3}{2} } } \bigg) + x {}^{3}   \sqrt{8 - x {}^{6} } }{6}  + c

Answer:-

 \sf \large \color{red}\sf \large \int {x}^{2} \sqrt{8 - {x}^{6} }= </p><p> \sf \large   \frac{8 \: arcsin \bigg( \frac{x {}^{3} }{2 {}^{ \frac{3}{2} } } \bigg) + x {}^{3}   \sqrt{8 - x {}^{6} } }{6}  + c.

Hope you have satisfied.

Similar questions