Math, asked by Anonymous, 10 days ago

Evaluate the integral:

 \displaystyle \int  \frac{ \int \limits_0^x \tan^{ -1}t \:  dt}{ {x}^{3} } dx

Answers

Answered by ProximaNova
12

\LARGE\color{black}{\colorbox{#FF7968}{A}\colorbox{#4FB3F6}{N}\colorbox{#FEDD8E}{S}\colorbox{#FBBE2E}{W}\colorbox{#60D399}{E}\colorbox{#6D83F3}{R}}

 :\longmapsto \displaystyle \int \frac{ \int \limits_0^x \tan^{ -1}t \: dt}{ {x}^{3} } dx

For solving this integral, we will first solve the nested integral

Let,

 :\longmapsto \displaystyle I_1 = \int \limits_0^x tan^{-1}tdt

Solving the integral using standard formulaes,

 :\longmapsto I_1 =\displaystyle \left[\dfrac{1}{1+ t^2}\right]^x_0

 :\longmapsto I_1 =\displaystyle \left[\dfrac{1}{1+x^2} - \dfrac{1}{1+0^2}\right]

 :\longmapsto I_1 =\dfrac{1}{1+x^2} - 1

 :\longmapsto I_1=\dfrac{1-1-x^2}{1+x^2}

 :\longmapsto I_1=\dfrac{-x^2}{1+x^2}

Now solving the main integral by substituting I1,

 :\longmapsto I = \displaystyle \int \dfrac{-x^2}{(1+x^2)x^3}dx

  :\longmapsto I = -\displaystyle \int \dfrac{1}{x(1+x^2)}

Splitting to solve the integrand,

 :\longmapsto I =- \displaystyle \int \dfrac{1}{x} - \dfrac{x}{1+x^2} dx

 :\longmapsto I = -\displaystyle \int \dfrac{1}{x} dx + \int \dfrac{x}{1+x^2}dx

 :\longmapsto I = \displaystyle - log|x| + C_1 + \int \dfrac{x}{1+x^2}dx

where C1 is constant of integration

Substituting 1+x² = u in the remaining integral , so that 2xdx = du

:\longmapsto I = \displaystyle -log|x| + C_1 + \int \dfrac{du}{2u}

:\longmapsto I = -log|x| + C_1 + \dfrac{log|u|}{2} + C_2

 :\longmapsto I = -log|x| + \dfrac{log|1+x^2|}{2} + C

where C= C1 + C2

Hence ,

\boxed{\displaystyle I = log|x| + \dfrac{log|1+x^2|}{2} + C}

Formulas used:

  • \displaystyle \int tan^{-1}xdx = \dfrac{1}{1+x^2} + C
  • \displaystyle \int \dfrac{1}{x}dx = log|x| + C
Similar questions