Math, asked by XxItzcutemundaXx98, 9 days ago

Evaluate the integral:

 \displaystyle \int \frac{ \int \limits_0^x \tan^{ -1}t \: dt}{ {x}^{3} } dx
​​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{I=\int\dfrac{\int\limits^{x}_{0}\,tan^{-1}(t)\,dt}{x^3}\,dx}

Solving the definite integral first,

\displaystyle\tt{\int^{x}_{0}\,tan^{-1}(t)\,dt}

Applying Integration By Parts,

\displaystyle\tt{=\left[tan^{-1}(t)\,\int\,dt\right]^{x}_{0}-\int^{x}_{0}\left\{\dfrac{d}{dt}\,tan^{-1}(t)\cdot\int\,dt\right\}\,dt}

\displaystyle\tt{=\left[t\cdot\,tan^{-1}(t)\right]^{x}_{0}-\int^{x}_{0}\left\{\dfrac{1}{1+t^2}\cdot\,t\right\}\,dt}

\displaystyle\tt{=\left[t\cdot\,tan^{-1}(t)\right]^{x}_{0}-\dfrac{1}{2}\int^{x}_{0}\dfrac{2t}{1+t^2}\,dt}

\displaystyle\tt{=\left[t\cdot\,tan^{-1}(t)\right]^{x}_{0}-\dfrac{1}{2}\left[\ln\left|1+t^2\right|\right]^{x}_{0}}

\displaystyle\tt{=x\cdot\,tan^{-1}(x)-\dfrac{1}{2}\ln\left|1+x^2\right|}

\displaystyle\tt{=x\cdot\,tan^{-1}(x)-\ln\sqrt{1+x^2}}

Now,

\displaystyle\tt{I=\int\dfrac{x\cdot\,tan^{-1}(x)-\ln\sqrt{1+x^2}}{x^3}\,dx}

\displaystyle\tt{\implies\,I=\int\dfrac{x\cdot\,tan^{-1}(x)}{x^3}\,dx-\int\dfrac{\ln\sqrt{1+x^2}}{x^3}\,dx}

\displaystyle\tt{\implies\,I=\int\dfrac{tan^{-1}(x)}{x^2}\,dx-\int\dfrac{\ln\sqrt{1+x^2}}{x^3}\,dx}

\displaystyle\tt{\implies\,I=I_{1}-I_{2}}

\bigstar\mathbf{\,\,\purple{Solving\,\,\,I_{1}:}}

\displaystyle\tt{\implies\,I_1=\int\dfrac{tan^{-1}(x)}{x^2}\,dx}

\sf{\mapsto\,\,\bf{\green{Put\,\,x=tan(\theta)}}}

\sf{\mapsto\,\,\bf{\green{dx=sec^2(\theta)\,d\theta}}}

So,

\displaystyle\tt{\implies\,I_1=\int\dfrac{tan^{-1}(tan(\theta))}{tan^2(\theta)}\,sec^2(\theta)\,d\theta}

\displaystyle\tt{\implies\,I_1=\int\theta\cdot\,cosec^2(\theta)\,d\theta}

\displaystyle\tt{\implies\,I_1=\theta\int\,cosec^2(\theta)\,d\theta\,-\int\left\{\dfrac{d}{d\theta}(\theta)\cdot\int\,cosec^2(\theta)\,d\theta\right\}\,d\theta}

\displaystyle\tt{\implies\,I_1=-\theta\,cot(\theta)\,+\int\,cot(\theta)\,d\theta}

\displaystyle\tt{\implies\,I_1=-\theta\,cot(\theta)\,+\ln|sin(\theta)|}

\displaystyle\tt{\implies\,I_1=-tan^{-1}(x)\cdot\,cot(tan^{-1}(x))\,+\ln|sin(tan^{-1}(x))|}

\displaystyle\tt{\implies\,I_1=-tan^{-1}(x)\cdot\,\dfrac{1}{x}\,+\ln\left|\dfrac{x}{\sqrt{1+x^2}}\right|}

\displaystyle\tt{\implies\,I_1=-\dfrac{tan^{-1}(x)}{x}\,+\ln\left|\dfrac{x}{\sqrt{1+x^2}}\right|+c_{1}}

\bigstar\mathbf{\,\,\purple{Solving\,\,\,I_{2}:}}

\displaystyle\tt{\implies\,I_{2}=\int\dfrac{\ln\sqrt{1+x^2}}{x^3}\,dx}

Solving by parts

\displaystyle\tt{\implies\,I_{2}=\ln\sqrt{1+x^2}\cdot\int\dfrac{1}{x^3}\,dx\,-\int\left[\dfrac{d}{dx}\left\{\ln\sqrt{1+x^2}\right\}\cdot\int\dfrac{dx}{x^3}\right]dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\int\left[\dfrac{1}{\sqrt{1+x^2}}\cdot\dfrac{x}{\sqrt{1+x^2}}\cdot\dfrac{1}{2x^2}\right]dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\int\dfrac{1}{x(1+x^2)}\,dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\int\left\{\dfrac{1}{x}-\dfrac{x}{x^2+1}\right\}\,dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\int\dfrac{dx}{x}-\dfrac{1}{2}\int\dfrac{x}{x^2+1}\,dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\int\dfrac{dx}{x}-\dfrac{1}{4}\int\dfrac{2x}{x^2+1}\,dx}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\,\ln|x|-\dfrac{1}{4}\ln|x^2+1|+C}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\,\ln|x|-\dfrac{1}{2}\ln\sqrt{x^2+1}+C}

\displaystyle\tt{\implies\,I_{2}=-\dfrac{\ln\sqrt{1+x^2}}{2x^2}+\dfrac{1}{2}\,\ln\left|\dfrac{x}{\sqrt{x^2+1}}\right|+c_{2}}

Now,

\displaystyle\tt{\implies\,I=I_{1}-I_{2}}

\displaystyle\tt{\implies\,I=-\dfrac{tan^{-1}(x)}{x}+\ln\left|\dfrac{x}{\sqrt{x^2+1}}\right|+c_{1}+\dfrac{\ln\sqrt{x^2+1}}{2x^2}-\dfrac{1}{2}\,\ln\left|\dfrac{x}{\sqrt{x^2+1}}\right|-c_{2}}

Put \sf{Put\,\,\,c_{1}-c_{2}=C}

So,

\displaystyle\tt{\implies\,I=-\dfrac{tan^{-1}(x)}{x}+\dfrac{1}{2}\ln\left|\dfrac{x}{\sqrt{x^2+1}}\right|+\dfrac{\ln\sqrt{x^2+1}}{2x^2}+C}

Answered by ItzTareCutiePie
6

Answer:

Elo gud noon

Daily difference difference id sa on.. aao xd

Step-by-step explanation:

The ISS is relatively easy to spot and dazzling, too, outshining the stars and any visible planets. But the ISS isn't the only satellite to see. Of the roughly ...

Similar questions