Math, asked by Anonymous, 15 days ago

Evaluate the integral

  \displaystyle\int {x}^{4} \ln \: x \: dx

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int \:  {x}^{4} \: ln \: x \: dx

We know, Integration by Parts

\displaystyle\int \: uvdx =u \displaystyle\int \: vdx - \displaystyle\int \: \bigg[\dfrac{d}{dx} u\displaystyle\int \: vdx\bigg]dx

So, using this formula taking

\rm :\longmapsto\:u =  {x}^{4}

\rm :\longmapsto\:v =  ln \: x

So, on substituting the values, we get

\rm \:  = ln \: x\displaystyle\int \:  {x}^{4} dx - \displaystyle\int \: \bigg[\dfrac{d}{dx} ln \: x\displaystyle\int \:  {x}^{4} dx\bigg]dx

\rm \:  =  \: ln \: x \: \dfrac{ {x}^{4 + 1} }{4 + 1} - \displaystyle\int \: \dfrac{1}{x}  \times \dfrac{ {x}^{4 + 1} }{4 + 1} dx

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} - \displaystyle\int \: \dfrac{1}{x}  \times \dfrac{ {x}^{5} }{5} dx

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} - \displaystyle\int \: \dfrac{ {x}^{4} }{5} dx

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} -\dfrac{1}{5}  \displaystyle\int \:  {x}^{4}  dx

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} -\dfrac{1}{5}   \times \dfrac{ {x}^{4 + 1} }{4 + 1} + c

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} -\dfrac{1}{5}   \times \dfrac{ {x}^{5} }{5} + c

\rm \:  =  \:  \dfrac{ {x}^{5} ln \: x}{5} - \dfrac{ {x}^{5} }{25} + c

Therefore,

 \red{\rm \implies\: \boxed{\displaystyle\int \:  {x}^{4}  \: ln \: x \: dx  =  \:  \dfrac{ {x}^{5} ln \: x}{5} - \dfrac{ {x}^{5} }{25} + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used

Integration by Parts

Rule :-

\displaystyle\int \: uvdx =u \displaystyle\int \: vdx - \displaystyle\int \: \bigg[\dfrac{d}{dx} u\displaystyle\int \: vdx\bigg]dx

where,

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions