Math, asked by sajan6491, 10 hours ago

Evaluate the integral

\displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} xdzdxdy

Answers

Answered by mathdude500
116

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} xdzdxdy

We have integrate with respect to z

So,

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }\bigg[ \int_{0}^{1 - x} xdz\bigg]dxdy

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }\bigg[xz\bigg]_{0}^{1 - x}dxdy

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }\bigg[x(1 - x)\bigg]dxdy

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }\bigg[x -  {x}^{2} \bigg]dxdy

Now we integrate with respect to x

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \bigg[\dfrac{ {x}^{2} }{2} - \dfrac{ {x}^{3} }{3}  \bigg]_{ {y}^{2} }^{1 - y}dy

\rm \:  =  \: \displaystyle\sf \int_{0}^{1} \bigg[\dfrac{ {(1 - y)}^{2} }{2} - \dfrac{ {(1 - y)}^{3} }{3} - \dfrac{ {y}^{4} }{2} +  \dfrac{ {y}^{6} }{3}  \bigg]dy

\rm \:  =  \: \bigg[ - \dfrac{ {(1 - y)}^{3} }{6} + \dfrac{ {(1 - y)}^{4} }{12} - \dfrac{ {y}^{5} }{10} +  \dfrac{ {y}^{7} }{21}  \bigg]_{0}^{1}

\rm \:  =  \: \bigg[ - \dfrac{1}{10} + \dfrac{1}{21}  \bigg] - \bigg[ - \dfrac{1}{6}  + \dfrac{1}{12} \bigg]

\rm \:  =  \: \bigg[ \dfrac{ - 21 + 10}{210}\bigg] - \bigg[ \dfrac{ - 2 + 1}{12} \bigg]

\rm \:  =  \: \bigg[ \dfrac{ - 11}{210}\bigg] - \bigg[ \dfrac{ - 1}{12} \bigg]

\rm \:  =  \: \dfrac{1}{12}  - \dfrac{11}{210}

\rm \:  =  \: \dfrac{210 - 132}{12 \times 210}

\rm \:  =  \: \dfrac{78}{12 \times 210}

\rm \:  =  \: \dfrac{39}{6 \times 210}

\rm \:  =  \: \dfrac{13}{2\times 210}

\rm \:  =  \: \dfrac{13}{420}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by IamIronMan0
112

Answer:

 \huge \frac{13}{420}

Step-by-step explanation:

\int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} xdzdxdy \\  \\  = \int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} \{ xz \}dxdy \\  \\  = \int_{0}^{1} \int_{ {y}^{2}} ^{1 - y} x({1 - x} )dxdy \\  \\  =   \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }( \frac{ {x}^{2} }{2}  -   \frac{ {x}^{3} }{3} )dy \\  \\  =    \int_{0}^{1} (\frac{ {(1 - y)}^{2} }{2}  -   \frac{ {(1 - y)}^{3} }{3}  - \frac{ {(y {}^{2} )}^{2} }{2}   +   \frac{ {( {y}^{2}) }^{3} }{3} )dy dy  \\  \\using \: integral \: property \: in \: first \: two \: terms \\   \int _{0} ^{1} f(y) \: dy =   \int _{0} ^{1} f(1 - y) \: dy \\   \\   = \  \int _{0} ^{1} ( \frac{ {y}^{2} }{2}  -   \frac{ {y}^{3} }{3} -  \frac{ {y}^{4} }{2}  +  \frac{ {y}^{6} }{3}  )dy  \\  \\  = \frac{ {y}^{3} }{6}  -   \frac{ {y}^{4} }{12} -  \frac{ {y}^{5} }{10}  +  \frac{ {y}^{7} }{21}   \:  \:  \{ \: lim \:  \: 0 \: to \: 1 \\  \\  =  \frac{1}{6}  -  \frac{1}{12}  -  \frac{1}{10}  +  \frac{1}{21}  \\  \\  =  \frac{70 - 35 - 42 + 20}{420}  \\  \\  =  \frac{13}{420}

Similar questions