Math, asked by hrideshshastri, 8 months ago


Evaluate the integral
 \sqrt{5 - 4x - 2x {}^{2} } dx

Answers

Answered by EnchantedGirl
12

GIVEN:-

\\

I =  \int \:  \frac{dx}{ \sqrt{5 - 4x - 2x {}^{2} } }

\\

SOLUTION:-

\\

 \implies \:  \: I =  \int \:  \frac{dx}{ \sqrt{ - 2(x {}^{2}   + 2x -  \frac{5}{2} })}  \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{ - (x {}^{2} + 2x -  \frac{5}{2}   + 1 - 1)} }  \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} }  \int \:  \frac{dx  }{ \sqrt{ - ((x {}^{2} + 2x + 1) -  \frac{5}{2}  - 1) } }  \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} } \int \:  \frac{dx}{ \sqrt{ - ((x + 1) {}^{2} - ( \frac{5}{2}  + 1)) } }   \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{ - ((x + 1) {}^{2}  -  \frac{7}{2}) } }  \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{( \frac{ \sqrt{7} }{ \sqrt{2} } ) {}^{2}   - (x + 1) {}^{2} } }  \\  \\  \\  \implies \:  \frac{1}{ \sqrt{2} }  \sin {}^{ - 1} ( \frac{ 1+x}{ \sqrt{ \frac{7}{2} }  } ) + c \\  \\  \\  \rightarrow \: we \: know \:  ✪ \boxed{ \int \:  \frac{dx}{ \sqrt{a {}^{2} - x {}^{2}  }  } =  \sin {}^{ - 1} ( \frac{x}{a} )  } \\  \\  \\  \implies \: I =  \frac{1}{ \sqrt{2}  }  \sin {}^{ - 1} (  \frac{ \sqrt{2} (x - 1)}{ \sqrt{7} }). \\  \\

\\

Hence , the Answer is ,

\\

 \boxed{I =  \frac{1}{ \sqrt{2}   }  \sin {}^{ - 1} ( \frac{  \sqrt{2}(x - 1)}{ \sqrt{7} } ) }

____________________________________________________________________

HOPE IT HELPS :)

Answered by Anonymous
3

 \bf \underline \blue{Question :  - }  \\

   1)\sf \: evaluate \:  \: the \: integral \\  \\ \bf \large \:  I =  \int \:  \frac{dx}{ \sqrt{5 - 4x -  {2x}^{2} } }  \\  \\

 \bf \underline \blue{Answer :  - }

 \bf \large \: I  =  \int \:  \frac{dx}{ \sqrt{5 - 4x -  {2x}^{2} } }  \\  \\  \implies \large \bf \int \:  \frac{dx}{ \sqrt{ - 2( {x}^{2}  + 2x -  \frac{5}{2}) } }  \\  \\ \implies \large \bf \:  \frac{1}{ \sqrt{2} }  \int \frac{dx}{ \sqrt{ - x( {x}^{2}  + 2x -  \frac{5}{2} + 1 - 1) } }

 \bf \large \implies \:  \frac{1}{ \sqrt{2} }  \int \:   \frac{dx}{ \sqrt{ -   \left[  ({x}^{2}  + 2x + 1) \:  -  \frac{5}{2}  - 1 \right]}} \\  \\ \bf \large \implies \: \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{ -  \left[   {(x + 1)}^{2}  -  \left( \dfrac{5}{2}  + 1 \right) \right]} }

 \bf \large \implies \:  \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{ - \left [  {(x + 1)}^{2} -  \frac{\sqrt{{7}}}{2}  \right]} }  \\  \\ \bf \large \implies \: \frac{1}{ \sqrt{2} }  \int \:  \frac{dx}{ \sqrt{ \left[ \dfrac{7}{2}  ^{2}  \right] -  {(x + 1)}^{2} } }  \\  \\

 \bf \large \implies \:  \frac{1}{ \sqrt{2} }  \:  \:  {sin}^{ - 1}  \left[  \dfrac{x + 1}{ \sqrt{ \frac{7}{2} } } \right] + C \\  \\ \bf \large   \:  \left[ \because \int \:  \frac{dx}{ {a}^{2}  -  {x}^{2} }  =  {sin}^{ - 1}  \:  \frac{x}{a}  \right]

 \bf \large \implies \red{ \frac{1}{ \sqrt{2} }  \:  {sin}^{ - 1}  \left[ \dfrac{ \sqrt{2}(x - 1) }{\sqrt{7}}  \right] + C}

Similar questions