Math, asked by sarthakchamp36, 11 months ago

Evaluate the integral, x= (1-sin omega t) dt with upper limit =π/omega and lower limit = 0​

Answers

Answered by MaheswariS
67

Answer:

x=\int\limits^{\frac{\pi}{\omega}}_0 (1-sin\omega{t}) \:dt=\frac{\pi-2}{\omega}

Step-by-step explanation:

x=\int\limits^{\frac{\pi}{\omega}}_0 (1-sin\omega{t}) \:dt

x=[t+\frac{cos\omega{t}}{\omega}]^{\frac{\pi}{\omega}}_0

x=[\frac{\pi}{\omega}+\frac{cos\omega(\frac{\pi}{\omega})}{\omega}]-[0+\frac{cos\omega{0}}{\omega}]

x=[\frac{\pi}{\omega}+\frac{cos\pi}{\omega}]-[0+\frac{cos\:0}{\omega}]

x=[\frac{\pi}{\omega}+\frac{(-1)}{\omega}]-[0+\frac{1}{\omega}]

x=\frac{\pi}{\omega}-\frac{1}{\omega}-\frac{1}{\omega}

x=\frac{\pi}{\omega}-\frac{2}{\omega}

x=\frac{\pi-2}{\omega}

Answered by purvashyama
2

hope this helps you!!!!!!!!!!

Attachments:
Similar questions