Math, asked by agayathri25, 8 months ago



evaluate the integrals?
chapter - integration ​

Attachments:

Answers

Answered by assingh
22

Topic

Integration

Question :-

\int \texttt{sin(mx).sin(nx) dx}

Solving

We can write integrand as

\frac{1}{2}\int \texttt{cos(m - n)x - cos(m + n)x dx}

from Trigonometric Formula,

2sinA.sinB = cos( A - B ) - cos( A + B )

Now, we can write

\frac{1}{2}\int \texttt{cos(m - n)x - cos(m + n)x dx}

as

\frac{1}{2}\int\texttt{(u + v) dx}

where

\texttt{u = cos(m - n)x and}

\texttt{v = cos(m + n)x}

We know that

\int\texttt{coskx dx} = \frac{1}{\texttt{k}}\texttt{sinkx +  C}

So,

\int\texttt{u dx} = \int \texttt{cos(m - n)x} = \frac{1}{\texttt{(m - n)}}\texttt{sin(m - n)x +  C}

\int\texttt{v dx} = \int \texttt{cos(m + n)x} = \frac{1}{\texttt{(m + n)}}\texttt{sin(m + n)x +  C}

Answer

\int \frac{1}{2}\texttt{(u + v) dx} = \frac{1}{2}\int\texttt{u dx} + \frac{1}{2}\int \texttt{v dx}

\frac{1}{\texttt{2(m - n)}}\texttt{sin(m - n)x} + \frac{1}{\texttt{2(m + n)}}\texttt{sin(m + n)x + C'}

Similar questions