Math, asked by Shelly18, 9 months ago

evaluate the integration

Attachments:

Answers

Answered by ps2206ps
3

I hope it can help you:)))

Attachments:
Answered by Anonymous
14

AnswEr :

Given Expression,

 \displaystyle \sf \int \dfrac{tan \: x}{sec \: x + tan \: x} dx

Multiplying Dividing by sec x - tan x, we obtain :

 \longrightarrow \displaystyle \sf \int \dfrac{tan \: x(sec \: x - tan \: x)}{(sec \: x + tan \: x)(sec \: x - tan \: x)} dx \\  \\ \longrightarrow \displaystyle \sf \int \dfrac{tan \: x.sec \: x - tan  {}^{2} \: x}{sec  {}^{2} \: x  -  tan {}^{2}  \: x} dx

Since, sec²x - tan²x = 1

Therefore,

 \longrightarrow \displaystyle \sf \int( sec \: x.tan \: x  +  1  - sec {}^{2} x)dx \\  \\   \longrightarrow\displaystyle \sf  \int sec \: x.tan \: x.dx \:   +  \int \: dx \:  -  \int {sec}^{2} x.dx \\  \\  \longrightarrow  \boxed{ \boxed{\sf \: sec \: x   +  x - tan \: x + C}}

Integral of the above integrand is x + sec x - tan x + C

Similar questions