Math, asked by omjadhav0115, 2 months ago

Evaluate the integration of 1/(2x^2+3x+1) dx​​

Answers

Answered by abhi569
4

Step-by-step explanation:

\implies \int  \frac{1 }{2x {}^{2} + 3x + 1 }  \small{ \mathsf{dx}} \\   \\ \implies\int  \frac{  \frac{1}{2} }{x {}^{2} +  \frac{3}{2}x + \frac{ 1}{2} }   \small{ \mathsf{dx}} \\  \\  \implies \small{\frac{1 }{2}}\int  \frac{ 1}{x {}^{2} +  \small{2} ( \frac{3}{4})(x) + (\frac{3}{4} ) {}^{2}   - (\frac{3}{4}) {}^{2}   +  \frac{ 1}{2} }   \small{ \mathsf{dx}} \\  \\ \implies \small{ \frac{1 }{2}}\int  \frac{1}{(x + \frac{3}{4} ) {}^{2}   - (\frac{3}{4}) {}^{2}   +  \frac{ 1}{2} }   \small{ \mathsf{dx}} \\  \\  \implies \small{\frac{1 }{2}}\int  \frac{1}{(x + \frac{3}{4} ) {}^{2}   -  \frac{ 1}{16} }   \small{ \mathsf{dx}} \\

\sf{  \bold{\small{let  \: x +  \frac{3}{4}  = t\:  \:  \:  \: \rightarrow dx = dt}}}   \\

\implies \small{\frac{1 }{2}}\int  \frac{1}{t {}^{2}   -(  \frac{ 1}{4}) {}^{2}  }   \small{ \mathsf{dt}}   \\  \\\implies  \small{\frac{1 }{2}}  \times    \frac{1}{2( \frac{1}{4}) }   \mathsf{ \times  ln \large{|} \small{\frac{t - \frac{1}{4} }{t +  \frac{1}{4} } }} \large{|}   \small{ \sf{ \: + C} } \\  \\\implies \mathsf{  \frac{1}{2}  \times 2 \times  \:  ln \large{|} \small{\frac{t - \frac{1}{4} }{t +  \frac{1}{4} } }} \large{|} \:  \:,    \small{ \sf{ \: + C} }\\  \\  \implies\mathsf{ ln \large{|} \small{\frac{x +  \frac{3}{4}  - \frac{1}{4} }{x +  \frac{3}{4} +  \frac{1}{4} } }} \large{|}  \small{ \sf{ \: + C} }\\  \\ \implies\mathsf{ ln \large{|} \small{\frac{2x + 1}{2x + 2} }} \large{|} \small{ \sf{ \: + C} } \\  \\ \implies  \sf{ln |2x + 1|\: - ln|2x + 2 |} + C

\sf{Notice \: that\: ln|2x + 2| + C = ln|x + 1| + ln2 + C}  \\ \sf{= ln|x + 1| + C_1 , \: \:as\: ln2\: is \:constant.}

\implies\bold{\sf{ln |2x + 1|\: - ln|x + 1|} + C}

Similar questions