Math, asked by kk1000, 3 days ago

Evaluate the limit ( 1 / (x² + x - 2) - x/(x³-1) ) when x tends to 1.​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{ \blue{ \lim_{x \to1}  \bigg( \dfrac{1}{ {x}^{2}  + x - 2} -  \dfrac{x}{ {x}^{3} - 1 }   \bigg)}} \\

 \sf{ =  \lim_{x \to1}  \bigg( \dfrac{1}{ {x}^{2}  +2 x - x - 2} -  \dfrac{x}{ (x - 1)( {x}^{2}  + x + 1) }   \bigg)} \\

 \sf{ =  \lim_{x \to1}  \bigg \{\dfrac{1}{ x(x +2)-( x  +  2)} -  \dfrac{x}{ (x - 1)( {x}^{2}  + x + 1) }   \bigg \}} \\

 \sf{ =  \lim_{x \to1}  \bigg \{\dfrac{1}{( x - 1)(x +2)} -  \dfrac{x}{ (x - 1)( {x}^{2}  + x + 1) }   \bigg \}} \\

 \sf{ =  \lim_{x \to1} \:  \:  \dfrac{1}{x - 1}   \bigg \{\dfrac{1}{x +2} -  \dfrac{x}{  {x}^{2}  + x + 1 }   \bigg \}} \\

 \sf{ =  \lim_{x \to1} \:  \:  \dfrac{1}{x - 1}   \bigg \{  \dfrac{ {x}^{2} + x + 1 -  x(x + 2)}{ (x + 2) ({x}^{2}  + x + 1 )}   \bigg \}} \\

 \sf{ =  \lim_{x \to1} \:  \:  \dfrac{1}{x - 1}   \bigg \{  \dfrac{ {x}^{2} + x + 1 -  x^{2}  -  2x}{ (x + 2) ({x}^{2}  + x + 1 )}   \bigg \}} \\

 \sf{ =  \lim_{x \to1} \:  \:  \dfrac{1}{x - 1}   \bigg \{  \dfrac{   1   -  x}{ (x + 2) ({x}^{2}  + x + 1 )}   \bigg \}} \\

 \sf{ =  \lim_{x \to1} \:  \:  \dfrac{1}{x - 1}   \bigg \{  \dfrac{    -(  x - 1)}{ (x + 2) ({x}^{2}  + x + 1 )}   \bigg \}} \\

 \sf{ =  -  \lim_{x \to1} \:  \:     \bigg \{  \dfrac{     1}{ (x + 2) ({x}^{2}  + x + 1 )}   \bigg \}} \\

 \sf{ =  -   \:  \:     \bigg \{  \dfrac{1}{ (1 + 2) ((1)^{2}  + 1 + 1 )}   \bigg \}} \\

 \sf{ =  -   \:  \:      \dfrac{1}{ (3) (3)}  } \\

 \sf{ =  -   \:  \:      \dfrac{1}{9}  } \\

Similar questions